ترغب بنشر مسار تعليمي؟ اضغط هنا

The Red Radio Ring: Ionised and Molecular Gas in a Starburst/Active Galactic Nucleus at $z sim 2.55$

237   0   0.0 ( 0 )
 نشر من قبل Kevin Harrington
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف K. C. Harrington




اسأل ChatGPT حول البحث

We report the detection of the far-infrared (FIR) fine-structure line of singly ionised nitrogen, Nplusa, within the peak epoch of galaxy assembly, from a strongly lensed galaxy, hereafter ``The Red Radio Ring; the RRR, at z = 2.55. We combine new observations of the ground-state and mid-J transitions of CO (J$_{rm up} =$ 1,5,8), and the FIR spectral energy distribution (SED), to explore the multi-phase interstellar medium (ISM) properties of the RRR. All line profiles suggest that the HII regions, traced by Nplusa, and the (diffuse and dense) molecular gas, traced by the CO, are co-spatial when averaged over kpc-sized regions. Using its mid-IR-to-millimetre (mm) SED, we derive a non-negligible dust attenuation of the Nplusa line emission. Assuming a uniform dust screen approximation results a mean molecular gas column density $> 10^{24}$, cm$^{-2}$, with a molecular gas-to-dust mass ratio of 100. It is clear that dust attenuation corrections should be accounted for when studying FIR fine-structure lines in such systems. The attenuation corrected ratio of $L_{rm NII205} / L_{rm IR(8-1000mu m)} = 2.7 times 10^{-4}$ is consistent with the dispersion of local and $z >$ 4 SFGs. We find that the lower-limit, Nplusa -based star-formation rate (SFR) is less than the IR-derived SFR by a factor of four. Finally, the dust SED, CO line SED and $L_{rm NII205}$ line-to-IR luminosity ratio of the RRR is consistent with a starburst-powered ISM.



قيم البحث

اقرأ أيضاً

We present Atacama Large Millimeter/submillimeter Array observations of CO lines and dust continuum emission of the source RCSGA 032727--132609, a young $z=1.7$ low-metallicity starburst galaxy. The CO(3-2) and CO(6-5) lines, and continuum at rest-fr ame $450,mu m$ are detected and show a resolved structure in the image plane. We use the corresponding lensing model to obtain a source plane reconstruction of the detected emissions revealing intrinsic flux density of $S_{450,mu m}=23.5_{-8.1}^{+26.8}$ $mu$Jy and intrinsic CO luminosities $L_{rm CO(3-2)}=2.90_{-0.23}^{+0.21}times10^{8}$ ${rm K,km,s^{-1},pc^{2}}$ and $L_{rm CO(6-5)}=8.0_{-1.3}^{+1.4}times10^{7}$ ${rm K,km,s^{-1},pc^{2}}$. We used the resolved properties in the source plane to obtain molecular gas and star-formation rate surface densities of $Sigma_{rm H2}=16.2_{-3.5}^{+5.8},{rm M}_{odot},{rm pc}^{-2}$ and $Sigma_{rm SFR}=0.54_{-0.27}^{+0.89},{rm M}_{odot},{rm yr}^{-1},{rm kpc}^{-2}$ respectively. The intrinsic properties of RCSGA 032727--132609 show an enhanced star-formation activity compared to local spiral galaxies with similar molecular gas densities, supporting the ongoing merger-starburst phase scenario. RCSGA 032727--132609 also appears to be a low--density starburst galaxy similar to local blue compact dwarf galaxies, which have been suggested as local analogs to high-redshift low-metallicity starburst systems. Finally, the CO excitation level in the galaxy is consistent with having the peak at ${rm J}sim5$, with a higher excitation concentrated in the star-forming clumps.
The feedback from an active galactic nucleus (AGN) is frequently invoked as a mechanism through which gas can be heated or removed from a galaxy. However, gas fraction measurements in AGN hosts have yielded mixed support for this scenario. Here, we r e-visit the assessment of fgas (=MHI/M*) in z<0.05 AGN hosts in the Sloan Digital Sky Survey (SDSS) using two complementary techniques. First, we investigate fgas for 75 AGN host galaxies in the extended GALEX Arecibo SDSS Survey (xGASS), whose atomic gas fractions are complete to a few percent. Second, we construct HI spectral stacks of 1562 AGN from the Arecibo Legacy Fast ALFA (ALFALFA) survey, which enables us to extend the AGN sample to lower stellar masses. Both techniques find that, at fixed M*, AGN hosts with log M*>10.2 are HI rich by a factor of ~2. However, this gas fraction excess disappears when the control sample is additionally matched in star formation rate (SFR), indicating that these AGN hosts are actually HI normal. At lower stellar mass, the stacking analysis reveals that AGN hosts are HI poor at fixed stellar mass. In the lowest M* regime probed by our sample, 9<log M*<9.6, the HI deficit in AGN hosts is a factor of ~4, and remains at a factor of ~2 even when the control sample is additionally matched in SFR. Our results help reconcile previously conflicting results, by showing that matching control samples by more than just stellar mass is critical for a rigourous comparison.
125 - J. E. Geach , A. More , A. Verma 2015
We report the discovery of a gravitationally lensed hyperluminous infrared galaxy (L_IR~10^13 L_sun) with strong radio emission (L_1.4GHz~10^25 W/Hz) at z=2.553. The source was identified in the citizen science project SpaceWarps through the visual i nspection of tens of thousands of iJKs colour composite images of Luminous Red Galaxies (LRGs), groups and clusters of galaxies and quasars. Appearing as a partial Einstein ring (r_e~3) around an LRG at z=0.2, the galaxy is extremely bright in the sub-millimetre for a cosmological source, with the thermal dust emission approaching 1 Jy at peak. The redshift of the lensed galaxy is determined through the detection of the CO(3-2) molecular emission line with the Large Millimetre Telescopes Redshift Search Receiver and through [OIII] and H-alpha line detections in the near-infrared from Subaru/IRCS. We have resolved the radio emission with high resolution (300-400 mas) eMERLIN L-band and JVLA C-band imaging. These observations are used in combination with the near-infrared imaging to construct a lens model, which indicates a lensing magnification of ~10x. The source reconstruction appears to support a radio morphology comprised of a compact (<250 pc) core and more extended component, perhaps indicative of an active nucleus and jet or lobe.
We perform a joint-analysis of high spatial resolution molecular gas and star-formation rate (SFR) maps in main-sequence star-forming galaxies experiencing galactic-scale outflows of ionised gas. Our aim is to understand the mechanism that determines which galaxies are able to launch these intense winds. We observed CO(1-0) at 1 resolution with ALMA in 16 edge-on galaxies, which also have 2 spatial resolution optical integral field observations from the SAMI Galaxy Survey. Half the galaxies in the sample were previously identified as harbouring intense and large-scale outflows of ionised gas (outflow-types), the rest serve as control galaxies. The dataset is complemented by integrated CO(1-0) observations from the IRAM 30-m telescope to probe the total molecular gas reservoirs. We find that the galaxies powering outflows do not possess significantly different global gas fractions or star-formation efficiencies when compared with a control sample. However, the ALMA maps reveal that the molecular gas in the outflow-type galaxies is distributed more centrally than in the control galaxies. For our outflow-type objects, molecular gas and star-formation is largely confined within their inner effective radius ($rm r_{eff}$), whereas in the control sample the distribution is more diffuse, extending far beyond $rm r_{eff}$. We infer that outflows in normal star-forming galaxies may be caused by dynamical mechanisms that drive molecular gas into their central regions, which can result in locally-enhanced gas surface density and star-formation.
Spectra of the archetypal Type II Seyfert galaxy NGC 1068 in a narrow wavelength interval near 3.7 microns have revealed a weak absorption feature due to two lines of the molecular ion H3+. The observed wavelength of the feature corresponds to veloci ty of -70 km/s relative to the systemic velocity of the galaxy, implying an outward flow from the nucleus along the line of sight. The absorption by H3+ along with the previously known broad hydrocarbon absorption at 3.4~microns probably are formed in diffuse gas that is in close proximity to the continuum source, i.e. within a few tens of parsecs of the central engine. Based on that conclusion and the measured H3+ absorption velocity and with the assumption of a spherically symmetric wind we estimate a rate of mass outflow from the AGN of ~1 Msun/yr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا