ترغب بنشر مسار تعليمي؟ اضغط هنا

New sharp necessary optimality conditions for mathematical programs with equilibrium constraints

109   0   0.0 ( 0 )
 نشر من قبل Jane Ye
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study the mathematical program with equilibrium constraints (MPEC) formulated as a mathematical program with a parametric generalized equation involving the regular normal cone. We derive a new necessary optimality condition which is sharper than the usual M-stationary condition and is applicable even when no constraint qualifications hold for the corresponding mathematical program with complementarity constraints (MPCC) reformulation.



قيم البحث

اقرأ أيضاً

93 - Lei Guo , Jane Ye 2016
This paper introduces and studies the optimal control problem with equilibrium constraints (OCPEC). The OCPEC is an optimal control problem with a mixed state and control equilibrium constraint formulated as a complementarity constraint and it can be seen as a dynamic mathematical program with equilibrium constraints. It provides a powerful modeling paradigm for many practical problems such as bilevel optimal control problems and dynamic principal-agent problems. In this paper, we propose weak, Clarke, Mordukhovich and strong stationarities for the OCPEC. Moreover, we give some sufficient conditions to ensure that the local minimizers of the OCPEC are Fritz John type weakly stationary, Mordukhovich stationary and strongly stationary, respectively. Unlike Pontryagains maximum principle for the classical optimal control problem with equality and inequality constraints, a counter example shows that for general OCPECs, there may exist two sets of multipliers for the complementarity constraints. A condition under which these two sets of multipliers coincide is given.
135 - Kuang Bai , Jane Ye 2020
The bilevel program is an optimization problem where the constraint involves solutions to a parametric optimization problem. It is well-known that the value function reformulation provides an equivalent single-level optimization problem but it result s in a nonsmooth optimization problem which never satisfies the usual constraint qualification such as the Mangasarian-Fromovitz constraint qualification (MFCQ). In this paper we show that even the first order sufficient condition for metric subregularity (which is in general weaker than MFCQ) fails at each feasible point of the bilevel program. We introduce the concept of directional calmness condition and show that under {the} directional calmness condition, the directional necessary optimality condition holds. {While the directional optimality condition is in general sharper than the non-directional one,} the directional calmness condition is in general weaker than the classical calmness condition and hence is more likely to hold. {We perform the directional sensitivity analysis of the value function and} propose the directional quasi-normality as a sufficient condition for the directional calmness. An example is given to show that the directional quasi-normality condition may hold for the bilevel program.
220 - An Li , Jane Ye 2015
In this paper we study an optimal control problem with nonsmooth mixed state and control constraints. In most of the existing results, the necessary optimality condition for optimal control problems with mixed state and control constraints are derive d under the Mangasarian-Fromovitz condition and under the assumption that the state and control constraint functions are smooth. In this paper we derive necessary optimality conditions for problems with nonsmooth mixed state and control constraints under constraint qualifications based on pseudo-Lipschitz continuity and calmness of certain set-valued maps. The necessary conditions are stratified, in the sense that they are asserted on precisely the domain upon which the hypotheses (and the optimality) are assumed to hold. Moreover necessary optimality conditions with an Euler inclusion taking an explicit multiplier form are derived for certain cases.
In this article, we derive first-order necessary optimality conditions for a constrained optimal control problem formulated in the Wasserstein space of probability measures. To this end, we introduce a new notion of localised metric subdifferential f or compactly supported probability measures, and investigate the intrinsic linearised Cauchy problems associated to non-local continuity equations. In particular, we show that when the velocity perturbations belong to the tangent cone to the convexification of the set of admissible velocities, the solutions of these linearised problems are tangent to the solution set of the corresponding continuity inclusion. We then make use of these novel concepts to provide a synthetic and geometric proof of the celebrated Pontryagin Maximum Principle for an optimal control problem with inequality final-point constraints. In addition, we propose sufficient conditions ensuring the normality of the maximum principle.
We propose an algorithm for solving bound-constrained mathematical programs with complementarity constraints on the variables. Each iteration of the algorithm involves solving a linear program with complementarity constraints in order to obtain an es timate of the active set. The algorithm enforces descent on the objective function to promote global convergence to B-stationary points. We provide a convergence analysis and preliminary numerical results on a range of test problems. We also study the effect of fixing the active constraints in a bound-constrained quadratic program that can be solved on each iteration in order to obtain fast convergence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا