ترغب بنشر مسار تعليمي؟ اضغط هنا

Super-resolution energy spectra from neutron direct-geometry spectrometers

78   0   0.0 ( 0 )
 نشر من قبل Jiao Lin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutron direct-geometry time-of-flight chopper spectroscopy is instrumental in studying fundamental excitations of vibrational and/or magnetic origin. We report here that techniques in super-resolution optical imagery (which is in real-space) can be adapted to enhance resolution and reduce noise for a neutron spectroscopy (an instrument for mapping excitations in reciprocal space). The procedure to reconstruct super-resolution energy spectra of phonon density of states relies on a realization of multi-frame registration, accurate determination of the energy-dependent point spread function, asymmetric nature of instrument resolution broadening, and iterative reconstructions. Applying these methods to phonon density of states data for a graphite sample demonstrates contrast enhancement, noise reduction, and ~5-fold improvement over nominal energy resolution. The data were collected at three different incident energies measured at the Wide Angular-Range Chopper Spectrometer at the Spallation Neutron Source.

قيم البحث

اقرأ أيضاً

Novel multiplexing triple-axis neutron scattering spectrometers yield significant improvements of the common triple-axis instruments. While the planar scattering geometry keeps ensuring compatibility with complex sample environments, a simultaneous d etection of scattered neutrons at various angles and energies leads to tremendous improvements in the data acquisition rate. Here we report on the software package MJOLNIR that we have developed to handle the resulting enhancement in data complexity. Using data from the new CAMEA spectrometer of the Swiss Spallation Neutron Source at the Paul Scherrer Institut, we show how the software reduces, visualises and treats observables measured on multiplexing spectrometers. The software package has been generalised to a uniformed framework, allowing for collaborations across multiplexing instruments at different facilities, further facilitating new developments in data treatment, such as fitting routines and modelling of multi-dimensional data.
Image registration is the inference of transformations relating noisy and distorted images. It is fundamental in computer vision, experimental physics, and medical imaging. Many algorithms and analyses exist for inferring shift, rotation, and nonline ar transformations between image coordinates. Even in the simplest case of translation, however, all known algorithms are biased and none have achieved the precision limit of the Cramer Rao bound (CRB). Following Bayesian inference, we prove that the standard method of shifting one image to match another cannot reach the CRB. We show that the bias can be cured and the CRB reached if, instead, we use Super Registration: learning an optimal model for the underlying image and shifting that to match the data. Our theory shows that coarse-graining oversampled images can improve registration precision of the standard method. For oversampled data, our method does not yield striking improvements as measured by eye. In these cases, however, we show our new registration method can lead to dramatic improvements in extractable information, for example, inferring $10times$ more precise particle positions.
Autonomous experiments are excellent tools to increase the efficiency of material discovery. Indeed, AI and ML methods can help optimizing valuable experimental resources as, for example, beam time in neutron scattering experiments, in addition to sc ientists knowledge and experience. Active learning methods form a particular class of techniques that acquire knowledge on a specific quantity of interest by autonomous decisions on what or where to investigate next based on previous measurements. For instance, Gaussian Process Regression (GPR) is a well-known technique that can be exploited to accomplish active learning tasks for scattering experiments as was recently demonstrated. Gaussian processes are not only capable to approximate functions by their posterior mean function, but can also quantify uncertainty about the approximation itself. Hence, if we perform function evaluations at locations of highest uncertainty, the function can be optimally learned in an iterative manner. We suggest the use of log-Gaussian processes, being a natural approach to successfully conduct autonomous neutron scattering experiments in general and TAS experiments with the instrument PANDA at MLZ in particular.
Signal processing techniques have been developed that use different strategies to bypass the Nyquist sampling theorem in order to recover more information than a traditional discrete Fourier transform. Here we examine three such methods: filter diago nalization, compressed sensing, and super-resolution. We apply them to a broad range of signal forms commonly found in science and engineering in order to discover when and how each method can be used most profitably. We find that filter diagonalization provides the best results for Lorentzian signals, while compressed sensing and super-resolution perform better for arbitrary signals.
142 - Han Peng , Xiang Gao , Yu He 2020
Two dimensional (2D) peak finding is a common practice in data analysis for physics experiments, which is typically achieved by computing the local derivatives. However, this method is inherently unstable when the local landscape is complicated, or t he signal-to-noise ratio of the data is low. In this work, we propose a new method in which the peak tracking task is formalized as an inverse problem, thus can be solved with a convolutional neural network (CNN). In addition, we show that the underlying physics principle of the experiments can be used to generate the training data. By generalizing the trained neural network on real experimental data, we show that the CNN method can achieve comparable or better results than traditional derivative based methods. This approach can be further generalized in different physics experiments when the physical process is known.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا