ﻻ يوجد ملخص باللغة العربية
Combing Gaia DR2 with LAMOST DR5, we spectroscopically identified 924 hot subdwarf stars, among which 32 stars exhibit strong double-lined composite spectra. We measured the effective temperature $T_{rm eff}$, surface gravity $log,g$, helium abundance $y=n{rm He}/n{rm H}$, and radial velocities of 892 non-composite spectra hot subdwarf stars by fitting LAMOST observations with Tlusty/Synspec non-LTE synthetic spectra. We outlined four different groups in the $T_{rm eff}-log,g$ diagram with our helium abundance classification scheme and two nearly parallel sequences in the $T_{rm eff}-log(y)$ diagram. 3D Galactic space motions and orbits of 747 hot subdwarf stars with $(G_{BP}-G_{RP})_{0}<-0.36$ mag were computed using LAMOST radial velocities and Gaia parallaxes and proper motions. Based on the $U-V$ velocity diagram, $J_{z}-$eccentricity diagram, and Galactic orbits, we derived Galactic population classifications and the fractional distributions of the four hot subdwarf helium groups in the halo, thin disk and thick disk. Comparisons with the predictions of binary population synthesis calculations (Han 2008) suggest that He-rich hot subdwarf stars with $log(y)ge0$ are from the double helium white dwarfs merger, He-deficient hot subdwarf stars with $-2.2lelog(y)<-1$ from the common envelope ejection, and He-deficient hot subdwarf stars with $log(y)<-2.2$ from the stable Roche lobe overflow channels. The relative number of He-rich hot subdwarf stars with $-1lelog(y)<0$ and $log(y)ge0$ in the halo is more than twice the prediction of Zhang et al.(2017), even more than six times in the thin disk, which implies that the mergers of helium white dwarfs with low mass main sequence stars may not be the main formation channel of He-rich hot subdwarf stars with $-1lelog(y)<0$, specially in younger environments.
Based on the Gaia DR2 catalogue of hot subdwarf star candidates, we identified 1587 hot subdwarf stars with spectra in LAMOST DR7. We present atmospheric parameters for these stars by fitting the LAMOST spectra with {sc Tlusty/Synspec} non-LTE synthe
Combining the LAMOST radial velocities with Gaia parallaxes and proper motions, we presented 3D Galactic space motions and the orbits of 182 single-lined hot subdwarf stars. These stars have been identified by Lei et al. (2020) in Gaia DR2 with LAMOS
182 single-lined hot subdwarf stars are identified by using spectra from the sixth and seventh data release (DR6 and DR7) of the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) survey. We classified all the hot subdwarf stars using
We present a catalog of 166 spectroscopically identified hot subdwarf stars from LAMOST DR1, 44 of which show the characteristics of cool companions in their optical spectra. Atmospheric parameters of 122 non-composite spectra subdwarf stars were mea
Since Gaia DR2 was released, many velocity structures in the disk have been revealed such as large scale ridge-like patterns in the phase space. Both kinematic information and stellar elemental abundances are needed to reveal their evolution history.