ترغب بنشر مسار تعليمي؟ اضغط هنا

$^7$Be and $^7$Li nuclei within the no-core shell model with continuum

100   0   0.0 ( 0 )
 نشر من قبل Matteo Vorabbi
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The production of $^7$Be and $^7$Li nuclei plays an important role in primordial nucleosynthesis, nuclear astrophysics, and fusion energy generation. The $^3mathrm{He}(alpha , gamma) ^7mathrm{Be}$ and $^3mathrm{H}(alpha , gamma) ^7mathrm{Li}$ radiative-capture processes are important to determine the $^7$Li abundance in the early universe and to predict the correct fraction of pp-chain branches resulting in $^7$Be versus $^8$B neutrinos. In this work we study the properties of $^7$Be and $^7$Li within the no-core shell model with continuum (NCSMC) method, using chiral nucleon-nucleon interactions as the only input, and analyze all the binary mass partitions involved in the formation of these systems. The NCSMC is an ab initio method applicable to light nuclei that provides a unified description of bound and scattering states and thus is well suited to investigate systems with many resonances and pronounced clustering like $^7$Be and $^7$Li. Our calculations reproduce all the experimentally known states of the two systems and provide predictions for several new resonances of both parities. Some of these new possible resonances are built on the ground states of $^6$Li and $^6$He, and thus represent a robust prediction. We do not find any resonance in the p${+}^6$Li mass partition near the threshold. On the other hand, in the p${+}^6$He mass partition of $^7$Li we observe an $S$-wave resonance near the threshold producing a very pronounced peak in the calculated S factor of the $^6mathrm{He} (mathrm{p},gamma) ^7mathrm{Li}$ radiative-capture reaction, which could be relevant for astrophysics and its implications should be investigated.



قيم البحث

اقرأ أيضاً

The ${^3{rm He}}(alpha,gamma){^7{rm Be}}$ and ${^3{rm H}}(alpha,gamma){^7{rm Li}}$ astrophysical $S$ factors are calculated within the no-core shell model with continuum using a renormalized chiral nucleon-nucleon interaction. The ${^3{rm He}}(alpha, gamma){^7{rm Be}}$ astrophysical $S$ factors agree reasonably well with the experimental data while the ${^3{rm H}}(alpha,gamma){^7{rm Li}}$ ones are overestimated. The seven-nucleon bound and resonance states and the $alpha+{^3{rm He}}/{^3{rm H}}$ elastic scattering are also studied and compared with experiment. The low-lying resonance properties are rather well reproduced by our approach. At low energies, the $s$-wave phase shift, which is non-resonant, is overestimated.
We present ab initio calculations of resonances for $^7$He, a nucleus with no bound states, using the realistic nucleon-nucleon interaction Daejeon16. For this, we evaluate the $n{-}{^6rm He}$ elastic scattering phase shifts obtained within an $S$-ma trix analysis of no-core shell model results for states in the continuum. We predict new broad resonances likely related to fragmentary experimental evidence.
We introduce a hybrid many-body approach that combines the flexibility of the No-Core Shell Model (NCSM) with the efficiency of Multi-Configurational Perturbation Theory (MCPT) to compute ground- and excited-state energies in arbitrary open-shell nuc lei in large model spaces. The NCSM in small model spaces is used to define a multi-determinantal reference state that contains the most important multi-particle multi-hole correlations and a subsequent second-order MCPT correction is used to capture additional correlation effects from a large model space. We apply this new ab initio approach for the calculation of ground-state and excitation energies of even and odd-mass carbon, oxygen, and fluorine isotopes and compare to large-scale NCSM calculations that are computationally much more expensive.
We present an ab initio approach for the description of collective excitations and transition strength distributions of arbitrary nuclei up into the sd-shell that based on the No-Core Shell Model in combination with the Lanczos strength-function meth od. Starting from two- and three-nucleon interactions from chiral effective field theory, we investigate the electric monopole, dipole, and quadrupole response of the even oxygen isotopes from 16-O to 24-O. The method describes the full energy range from low-lying excitations to the giant resonance region and beyond in a unified and consistent framework, including a complete description of fragmentation and fine-structure. This opens unique opportunities for understanding dynamic properties of nuclei from first principles and to further constrain nuclear interactions. We demonstrate the computational efficiency and the robust model-space convergence of our approach and compare to established approximate methods, such as the Random Phase Approximation, shedding new light on their deficiencies.
81 - J. G. Li , N. Michel , W. Zuo 2021
The $A=4$ nuclei, i.e., $^4$H, $^4$He and $^4$Li, establish an interesting isospin $T=1$ isobaric system. $^4$H and $^4$Li are unbound broad resonances, whereas $^4$He is deeply bound in its ground state but unbound in all its excited states. The pre sent situation is that experiments so far have not given consistent data on the resonances. Few-body calculations have well studied the scatterings of the $4N$ systems. In the present work, we provide many-body calculations of the broad resonance structures, in an textit{ab initio} framework with modern realistic interactions. It occurs that, indeed, $^4$H, $^4$Li and excited $^4$He are broad resonances, which is in accordance with experimental observations. The calculations also show that the first $1^-$ excited state almost degenerates with the $2^-$ ground state in the pair of mirror isobars of $^4$H and $^4$Li, which may suggest that the experimental data on energy and width are the mixture of the ground state and the first excited state. The $T = 1$ isospin triplet formed with an excited state of $^4$He and ground states of $^4$H and $^4$Li is studied, focusing on the effect of isospin symmetry breaking.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا