ترغب بنشر مسار تعليمي؟ اضغط هنا

Challenges for Verifying and Validating Scientific Software in Computational Materials Science

61   0   0.0 ( 0 )
 نشر من قبل Thomas Vogel
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Many fields of science rely on software systems to answer different research questions. For valid results researchers need to trust the results scientific software produces, and consequently quality assurance is of utmost importance. In this paper we are investigating the impact of quality assurance in the domain of computational materials science (CMS). Based on our experience in this domain we formulate challenges for validation and verification of scientific software and their results. Furthermore, we describe directions for future research that can potentially help dealing with these challenges.



قيم البحث

اقرأ أيضاً

Although computer science papers are often accompanied by software artifacts, connecting research papers to their software artifacts and vice versa is not always trivial. First of all, there is a lack of well-accepted standards for how such links sho uld be provided. Furthermore, the provided links, if any, often become outdated: they are affected by link rot when pre-prints are removed, when repositories are migrated, or when papers and repositories evolve independently. In this paper, we summarize the state of the practice of linking research papers and associated source code, highlighting the recent efforts towards creating and maintaining such links. We also report on the results of several empirical studies focusing on the relationship between scientific papers and associated software artifacts, and we outline challenges related to traceability and opportunities for overcoming these challenges.
Managing and growing a successful cyberinfrastructure such as nanoHUB.org presents a variety of opportunities and challenges, particularly in regard to software. This position paper details a number of those issues and how we have approached them.
198 - Dane Morgan , Ryan Jacobs 2020
Advances in machine learning have impacted myriad areas of materials science, ranging from the discovery of novel materials to the improvement of molecular simulations, with likely many more important developments to come. Given the rapid changes in this field, it is challenging to understand both the breadth of opportunities as well as best practices for their use. In this review, we address aspects of both problems by providing an overview of the areas where machine learning has recently had significant impact in materials science, and then provide a more detailed discussion on determining the accuracy and domain of applicability of some common types of machine learning models. Finally, we discuss some opportunities and challenges for the materials community to fully utilize the capabilities of machine learning.
Materials Cloud is a platform designed to enable open and seamless sharing of resources for computational science, driven by applications in materials modelling. It hosts 1) archival and dissemination services for raw and curated data, together with their provenance graph, 2) modelling services and virtual machines, 3) tools for data analytics, and pre-/post-processing, and 4) educational materials. Data is citable and archived persistently, providing a comprehensive embodiment of the FAIR principles that extends to computational workflows. Materials Cloud leverages the AiiDA framework to record the provenance of entire simulation pipelines (calculations performed, codes used, data generated) in the form of graphs that allow to retrace and reproduce any computed result. When an AiiDA database is shared on Materials Cloud, peers can browse the interconnected record of simulations, download individual files or the full database, and start their research from the results of the original authors. The infrastructure is agnostic to the specific simulation codes used and can support diverse applications in computational science that transcend its initial materials domain.
Reliable empirical models such as those used in software effort estimation or defect prediction are inherently dependent on the data from which they are built. As demands for process and product improvement continue to grow, the quality of the data u sed in measurement and prediction systems warrants increasingly close scrutiny. In this paper we propose a taxonomy of data quality challenges in empirical software engineering, based on an extensive review of prior research. We consider current assessment techniques for each quality issue and proposed mechanisms to address these issues, where available. Our taxonomy classifies data quality issues into three broad areas: first, characteristics of data that mean they are not fit for modeling; second, data set characteristics that lead to concerns about the suitability of applying a given model to another data set; and third, factors that prevent or limit data accessibility and trust. We identify this latter area as of particular need in terms of further research.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا