ترغب بنشر مسار تعليمي؟ اضغط هنا

High-precision Monte-Carlo modelling of galaxy distribution

43   0   0.0 ( 0 )
 نشر من قبل Philippe Baratta
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We revisit the case of fast Monte-Carlo simulations of galaxy positions for a non-gaussian field. More precisely we address the question of generating a 3D field with a given one-point function (as a log-normal one, but not only) and some power-spectrum fixed by cosmology. We highlight and investigate a problem that occurs when the field is filtered and identify, for the log-normal case, a regime where it can still be used. However we show that the filtering is unnecessary if one takes into account aliasing effects and finely controls the discrete sampling step. In this way we demonstrate a sub-percent precision of all our spectra up to the Nyquist frequency. We extend the method to generate a full light cone evolution comparing two methods for doing it and validate our method with a tomographic analysis. We investigate analytically and numerically the structure of the covariance matrices obtained with such simulations which may be useful for future large and deep surveys.

قيم البحث

اقرأ أيضاً

124 - M.M. Tsypin , H.W.J. Blote 1999
We study the probability distribution P(M) of the order parameter (average magnetization) M, for the finite-size systems at the critical point. The systems under consideration are the 3-dimensional Ising model on a simple cubic lattice, and its 3-sta te generalization known to have remarkably small corrections to scaling. Both models are studied in a cubic box with periodic boundary conditions. The model with reduced corrections to scaling makes it possible to determine P(M) with unprecedented precision. We also obtain a simple, but remarkably accurate approximate formula describing the universal shape of P(M).
We perform large-scale Monte Carlo simulations of the classical XY model on a three-dimensional $Ltimes L times L$ cubic lattice using the graphics processing unit (GPU). By the combination of Metropolis single-spin flip, over-relaxation and parallel -tempering methods, we simulate systems up to L=160. Performing the finite-size scaling analysis, we obtain estimates of the critical exponents for the three-dimensional XY universality class: $alpha=-0.01293(48)$ and $ u=0.67098(16)$. Our estimate for the correlation-length exponent $ u$, in contrast to previous theoretical estimates, agrees with the most recent experimental estimate $ u_{rm exp}=0.6709(1)$ at the superfluid transition of $^4$He in a microgravity environment.
We present the public release of the Bayesian sampling algorithm for cosmology, CosmoPMC (Cosmology Population Monte Carlo). CosmoPMC explores the parameter space of various cosmological probes, and also provides a robust estimate of the Bayesian evi dence. CosmoPMC is based on an adaptive importance sampling method called Population Monte Carlo (PMC). Various cosmology likelihood modules are implemented, and new modules can be added easily. The importance-sampling algorithm is written in C, and fully parallelised using the Message Passing Interface (MPI). Due to very little overhead, the wall-clock time required for sampling scales approximately with the number of CPUs. The CosmoPMC package contains post-processing and plotting programs, and in addition a Monte-Carlo Markov chain (MCMC) algorithm. The sampling engine is implemented in the library pmclib, and can be used independently. The software is available for download at http://www.cosmopmc.info.
We introduce a fast Markov Chain Monte Carlo (MCMC) exploration of the astrophysical parameter space using a modified version of the publicly available code CIGALE (Code Investigating GALaxy emission). The original CIGALE builds a grid of theoretical Spectral Energy Distribution (SED) models and fits to photometric fluxes from Ultraviolet (UV) to Infrared (IR) to put contraints on parameters related to both formation and evolution of galaxies. Such a grid-based method can lead to a long and challenging parameter extraction since the computation time increases exponentially with the number of parameters considered and results can be dependent on the density of sampling points, which must be chosen in advance for each parameter. Markov Chain Monte Carlo methods, on the other hand, scale approximately linearly with the number of parameters, allowing a faster and more accurate exploration of the parameter space by using a smaller number of efficiently chosen samples. We test our MCMC version of the code CIGALE (called CIGALEMC) with simulated data. After checking the ability of the code to retrieve the input parameters used to build the mock sample, we fit theoretical SEDs to real data from the well known and studied SINGS sample. We discuss constraints on the parameters and show the advantages of our MCMC sampling method in terms of accuracy of the results and optimization of CPU time.
96 - J. Prat , J. Blazek , C. Sanchez 2021
We present and characterize the galaxy-galaxy lensing signal measured using the first three years of data from the Dark Energy Survey (DES Y3) covering 4132 deg$^2$. These galaxy-galaxy measurements are used in the DES Y3 3$times$2pt cosmological ana lysis, which combines weak lensing and galaxy clustering information. We use two lens samples: a magnitude-limited sample and the redMaGic sample, which span the redshift range $sim 0.2-1$ with 10.7 M and 2.6 M galaxies respectively. For the source catalog, we use the Metacalibration shape sample, consisting of $simeq$100 M galaxies separated into 4 tomographic bins. Our galaxy-galaxy lensing estimator is the mean tangential shear, for which we obtain a total S/N of $sim$148 for MagLim ($sim$120 for redMaGic), and $sim$67 ($sim$55) after applying the scale cuts of 6 Mpc/$h$. Thus we reach percent-level statistical precision, which requires that our modeling and systematic-error control be of comparable accuracy. The tangential shear model used in the 3$times$2pt cosmological analysis includes lens magnification, a five-parameter intrinsic alignment model (TATT), marginalization over a point-mass to remove information from small scales and a linear galaxy bias model validated with higher-order terms. We explore the impact of these choices on the tangential shear observable and study the significance of effects not included in our model, such as reduced shear, source magnification and source clustering. We also test the robustness of our measurements to various observational and systematics effects, such as the impact of observing conditions, lens-source clustering, random-point subtraction, scale-dependent Metacalibration responses, PSF residuals, and B-modes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا