ﻻ يوجد ملخص باللغة العربية
Gravitational Waves (GWs) can determine the luminosity distance of the progenitor directly from the amplitude of the wave, without assuming any specific cosmological model. Thus, it can be considered as a standard siren. The coalescence of binary neutron stars (BNS) or neutron star-black hole pair (NSBH) can generate GWs as well as the electromagnetic counterpart, which can be detected in a form of Gamma-Ray Bursts (GRB) and can be used to determine the redshift of the source. Consequently, such a standard siren can be a very useful probe to constrain the cosmological parameters. In this work, we consider an interacting Dark Matter-Dark Energy (DM-DE) model. Assuming some fiducial values for the parameters of our model, we simulate the luminosity distance for a realistic and optimistic GW+GRB events , which can be detected by the third-generation GW detector Einstein Telescope (ET). Using these simulated events, we perform a Monte Carlo Markov Chain (MCMC) to constrain the DM-DE coupling constant and other model parameters in $1sigma$ and $2sigma$ confidence levels. We also investigate how GWs can improve the constraints obtained by current cosmological probes.
We study the holographic dark energy (HDE) model by using the future gravitational wave (GW) standard siren data observed from the Einstein Telescope (ET) in this work. We simulate 1000 GW standard siren data based on a 10-year observation of the ET
We consider a dark energy scenario driven by a scalar field $phi$ with a pseudo Nambu Goldstone boson (pNGB) type potential $V(phi)=mu^4 left( 1+ {rm cos}(phi/f) right)$. The pNGB originates out of breaking of spontaneous symmetry at a scale $f$ clos
We study a class of early dark energy models which has substantial amount of dark energy in the early epoch of the universe. We examine the impact of the early dark energy fluctuations on the growth of structure and the CMB power spectrum in the line
Interacting dark matter (DM) - dark energy (DE) models have been intensively investigated in the literature for their ability to fit various data sets as well as to explain some observational tensions persisting within the $Lambda$CDM cosmology. In t
In this paper we study a model of interacting dark energy - dark matter where the ratio between these components is not constant, changing from early to late times in such a way that the model can solve or alleviate the cosmic coincidence problem (CP