ﻻ يوجد ملخص باللغة العربية
We introduce Deep-CEE (Deep Learning for Galaxy Cluster Extraction and Evaluation), a proof of concept for a novel deep learning technique, applied directly to wide-field colour imaging to search for galaxy clusters, without the need for photometric catalogues. This technique is complementary to traditional methods and could also be used in combination with them to confirm galaxy cluster candidates. We use a state-of-the-art probabilistic algorithm, adapted to localize and classify galaxy clusters from other astronomical objects in SDSS imaging. As there is an abundance of labelled data for galaxy clusters from previous classifications in publicly available catalogues, we do not need to rely on simulated data. This means we keep our training data as realistic as possible, which is advantageous when training a deep learning algorithm. Ultimately, we will apply our model to surveys such as LSST and Euclid to probe wider and deeper into unexplored regions of the Universe. This will produce large samples of both high redshift and low mass clusters, which can be utilized to constrain both environment-driven galaxy evolution and cosmology.
Convolutional Networks (ConvNets) have recently improved image recognition performance thanks to end-to-end learning of deep feed-forward models from raw pixels. Deep learning is a marked departure from the previous state of the art, the Fisher Vecto
Deep Convolutional Neural Networks (DCNNs) is currently the method of choice both for generative, as well as for discriminative learning in computer vision and machine learning. The success of DCNNs can be attributed to the careful selection of their
We present a new deep spectroscopic catalogue for Abell 85, within 3.0 $times$ 2.6 Mpc$^2$ and down to $M_{r} sim M_{r}^* +6$. Using the Visible Multi-Object Spectrograph at the Very Large Telescope (VIMOS@VLT) and the AutoFiber 2 at the William Hers
The next generation of data-intensive surveys are bound to produce a vast amount of data, which can be dealt with using machine-learning methods to explore possible correlations within the multi-dimensional parameter space. We explore the classificat
We present a morphological catalogue for $sim$ 670,000 galaxies in the Sloan Digital Sky Survey in two flavours: T-Type, related to the Hubble sequence, and Galaxy Zoo 2 (GZ2 hereafter) classification scheme. By combining accurate existing visual cla