ترغب بنشر مسار تعليمي؟ اضغط هنا

Reversible Privacy Preservation using Multi-level Encryption and Compressive Sensing

160   0   0.0 ( 0 )
 نشر من قبل Mehmet Yamac
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Security monitoring via ubiquitous cameras and their more extended in intelligent buildings stand to gain from advances in signal processing and machine learning. While these innovative and ground-breaking applications can be considered as a boon, at the same time they raise significant privacy concerns. In fact, recent GDPR (General Data Protection Regulation) legislation has highlighted and become an incentive for privacy-preserving solutions. Typical privacy-preserving video monitoring schemes address these concerns by either anonymizing the sensitive data. However, these approaches suffer from some limitations, since they are usually non-reversible, do not provide multiple levels of decryption and computationally costly. In this paper, we provide a novel privacy-preserving method, which is reversible, supports de-identification at multiple privacy levels, and can efficiently perform data acquisition, encryption and data hiding by combining multi-level encryption with compressive sensing. The effectiveness of the proposed approach in protecting the identity of the users has been validated using the goodness of reconstruction quality and strong anonymization of the faces.



قيم البحث

اقرأ أيضاً

Set-based estimation has gained a lot of attention due to its ability to guarantee state enclosures for safety-critical systems. However, it requires computationally expensive operations, which in turn often requires outsourcing of these operations t o cloud-computing platforms. Consequently, this raises some concerns with regard to sharing sensitive information and measurements. This paper presents the first privacy-preserving set-based estimation protocols using partially homomorphic encryption in which we preserve the privacy of the set of all possible estimates and the measurements. We consider a linear discrete-time dynamical system with bounded modeling and measurement uncertainties without any other statistical assumptions. We represent sets by zonotopes and constrained zonotopes as they can compactly represent high-dimensional sets and are closed under linear maps and Minkowski addition. By selectively encrypting some parameters of the used set representations, we are able to intersect sets in the encrypted domain, which enables guaranteed state estimation while ensuring the privacy goals. In particular, we show that our protocols achieve computational privacy using formal cryptographic definitions of computational indistinguishability. We demonstrate the efficiency of our approach by localizing a mobile quadcopter using custom ultra-wideband wireless devices. Our code and data are available online.
Personally identifiable information (PII) can find its way into cyberspace through various channels, and many potential sources can leak such information. Data sharing (e.g. cross-agency data sharing) for machine learning and analytics is one of the important components in data science. However, due to privacy concerns, data should be enforced with strong privacy guarantees before sharing. Different privacy-preserving approaches were developed for privacy preserving data sharing; however, identifying the best privacy-preservation approach for the privacy-preservation of a certain dataset is still a challenge. Different parameters can influence the efficacy of the process, such as the characteristics of the input dataset, the strength of the privacy-preservation approach, and the expected level of utility of the resulting dataset (on the corresponding data mining application such as classification). This paper presents a framework named underline{P}rivacy underline{P}reservation underline{a}s underline{a} underline{S}ervice (PPaaS) to reduce this complexity. The proposed method employs selective privacy preservation via data perturbation and looks at different dynamics that can influence the quality of the privacy preservation of a dataset. PPaaS includes pools of data perturbation methods, and for each application and the input dataset, PPaaS selects the most suitable data perturbation approach after rigorous evaluation. It enhances the usability of privacy-preserving methods within its pool; it is a generic platform that can be used to sanitize big data in a granular, application-specific manner by employing a suitable combination of diverse privacy-preserving algorithms to provide a proper balance between privacy and utility.
Privacy protection is an important research area, which is especially critical in this big data era. To a large extent, the privacy of visual classification data is mainly in the mapping between the image and its corresponding label, since this relat ion provides a great amount of information and can be used in other scenarios. In this paper, we propose the mapping distortion based protection (MDP) and its augmentation-based extension (AugMDP) to protect the data privacy by modifying the original dataset. In the modified dataset generated by MDP, the image and its label are not consistent ($e.g.$, a cat-like image is labeled as the dog), whereas the DNNs trained on it can still achieve good performance on benign testing set. As such, this method can protect privacy when the dataset is leaked. Extensive experiments are conducted, which verify the effectiveness and feasibility of our method. The code for reproducing main results is available at url{https://github.com/PerdonLiu/Visual-Privacy-Protection-via-Mapping-Distortion}.
104 - Michele Scipioni 2018
Parametric images provide insight into the spatial distribution of physiological parameters, but they are often extremely noisy, due to low SNR of tomographic data. Direct estimation from projections allows accurate noise modeling, improving the resu lts of post-reconstruction fitting. We propose a method, which we name kinetic compressive sensing (KCS), based on a hierarchical Bayesian model and on a novel reconstruction algorithm, that encodes sparsity of kinetic parameters. Parametric maps are reconstructed by maximizing the joint probability, with an Iterated Conditional Modes (ICM) approach, alternating the optimization of activity time series (OS-MAP-OSL), and kinetic parameters (MAP-LM). We evaluated the proposed algorithm on a simulated dynamic phantom: a bias/variance study confirmed how direct estimates can improve the quality of parametric maps over a post-reconstruction fitting, and showed how the novel sparsity prior can further reduce their variance, without affecting bias. Real FDG PET human brain data (Siemens mMR, 40min) images were also processed. Results enforced how the proposed KCS-regularized direct method can produce spatially coherent images and parametric maps, with lower spatial noise and better tissue contrast. A GPU-based open source implementation of the algorithm is provided.
Blockchain offers traceability and transparency to supply chain event data and hence can help overcome many challenges in supply chain management such as: data integrity, provenance and traceability. However, data privacy concerns such as the protect ion of trade secrets have hindered adoption of blockchain technology. Although consortium blockchains only allow authorised supply chain entities to read/write to the ledger, privacy preservation of trade secrets cannot be ascertained. In this work, we propose a privacy-preservation framework, PrivChain, to protect sensitive data on blockchain using zero knowledge proofs. PrivChain provides provenance and traceability without revealing any sensitive information to end-consumers or supply chain entities. Its novelty stems from: a) its ability to allow data owners to protect trade related information and instead provide proofs on the data, and b) an integrated incentive mechanism for entities providing valid proofs over provenance data. In particular, PrivChain uses Zero Knowledge Range Proofs (ZKRPs), an efficient variant of ZKPs, to provide origin information without disclosing the exact location of a supply chain product. Furthermore, the framework allows to compute proofs and commitments off-line, decoupling the computational overhead from blockchain. The proof verification process and incentive payment initiation are automated using blockchain transactions, smart contracts, and events. A proof of concept implementation on Hyperledger Fabric reveals a minimal overhead of using PrivChain for blockchain enabled supply chains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا