ترغب بنشر مسار تعليمي؟ اضغط هنا

Amino Acid Chiral Selection Via Weak Interactions in Stellar Environments: Implications for the Origin of Life

327   0   0.0 ( 0 )
 نشر من قبل Michael Famiano
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetochiral phenomena may be responsible for the selection of chiral states of biomolecules in meteoric environments. For example, the Supernova Amino Acid Processing (SNAAP) Model was proposed previously as a possible mode of magnetochiral selection of amino acids by way of the weak interaction in strong magnetic fields. In earlier work, this model was shown to produce an enantiomeric excess (ee) as high as 0.014% for alanine. In this paper we present the results of molecular quantum chemistry calculations from which $ee$s are determined for the alpha-amino acids plus isovaline and norvaline, which were found to have positive ees in meteorites. Calculations are performed for both isolated and aqueous states. In some cases, the aqueous state was found to produce larger $ee$s reaching values as high as a few percent under plausible conditions.

قيم البحث

اقرأ أيضاً

The discovery of amino acids in meteorites has presented two clues to the origin of their processing subsequent to their formation: a slight preference for left-handedness in some of them, and isotopic anomalies in some of their constituent atoms. In this article we present theoretical results from the Supernova Neutrino Amino Acid Processing (SNAAP) model, which uses electron anti-neutrinos and the magnetic fields from source objects such as supernovae or colliding neutron stars to selectively destroy one amino acid chirality and to create isotopic abundance shifts. For plausible magnetic fields and electron anti-neutrino fluxes, non-zero, positive enantiomeric excesses, $ee$s, defined to be the relative left/right asymmetry in an amino acid population, are reviewed for two amino acids, and conditions are suggested that would produce $ee>0$ for all of the $alpha$-amino acids. The relatively high energy anti-neutrinos that produce the $ee$s would inevitably also produce isotopic anomalies. A nuclear reaction network was developed to describe the reactions resulting from them and the nuclides in the meteorites. At similar anti-neutrino fluxes, assumed recombination of the detritus from the anti-neutrino interactions is shown to produce appreciable isotopic anomalies in qualitative agreement with those observed for D/$^1$H and $^{15}$N/$^{14}$N. The isotopic anomalies for $^{13}$C/$^{12}$C are predicted to be small, as are also observed. Autocatalysis may be necessary for any model to produce the largest $ee$s observed in meteorites. This allows the constraints of the original SNAAP model to be relaxed, increasing the probability of meteoroid survival in sites where amino acid processing is possible. These results have obvious implications for the origin of life on Earth.
We report on the successful synthesis and hyperpolarization of N unprotected {alpha} amino acid ethyl acrylate esters and extensively, on an alanine derivative hyperpolarized by PHIP (4.4$pm$1% $^{13}$C-polarization), meeting required levels for in v ivo detection. Using water as solvent increases biocompatibility and the absence of N-protection is expected to maintain biological activity.
We propose an alternative to the prevailing two origin of life narratives, one based on a replicator first hypothesis, and one based on a metabolism first hypothesis. Both hypotheses have known difficulties: All known evolvable molecular replicators such as RNA require complex chemical (enzymatic) machinery for the replication process. Likewise, contemporary cellular metabolisms require several enzymatically catalyzed steps, and it is difficult to identify a non-enzymatic path to their realization. We propose that there must have been precursors to both replication and metabolism that enable a form of selection to take place through action of simple chemical and physical processes. We model a concrete example of such a process, repeated sequestration of binary molecular combinations after exposure to an environment with a broad distribution of chemical components, as might be realized experimentally in in a repeated wet-dry cycle. We show that the repeated sequestration dynamics results in a selective amplification of a very small subset of molecular species present in the environment, thus providing a candidate primordial selection process.
Many commonly used force fields for protein systems such as AMBER, CHARMM, GROMACS, OPLS, and ECEPP have amino-acid-independent force-field parameters of main-chain torsion-energy terms. Here, we propose a new type of amino-acid-dependent torsion-ene rgy terms in the force fields. As an example, we applied this approach to AMBER ff03 force field and determined new amino-acid-dependent parameters for $psi$ and $psi$ angles for each amino acid by using our optimization method, which is one of the knowledge-based approach. In order to test the validity of the new force-field parameters, we then performed folding simulations of $alpha$-helical and $beta$-hairpin peptides, using the optimized force field. The results showed that the new force-field parameters gave structures more consistent with the experimental implications than the original AMBER ff03 force field.
The twenty protein coding amino acids are found in proteomes with different relative abundances. The most abundant amino acid, leucine, is nearly an order of magnitude more prevalent than the least abundant amino acid, cysteine. Amino acid metabolic costs differ similarly, constraining their incorporation into proteins. On the other hand, sequence diversity is necessary for protein folding, function and evolution. Here we present a simple model for a cost-diversity trade-off postulating that natural proteomes minimize amino acid metabolic flux while maximizing sequence entropy. The model explains the relative abundances of amino acids across a diverse set of proteomes. We found that the data is remarkably well explained when the cost function accounts for amino acid chemical decay. More than one hundred proteomes reach comparable solutions to the trade-off by different combinations of cost and diversity. Quantifying the interplay between proteome size and entropy shows that proteomes can get optimally large and diverse.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا