ﻻ يوجد ملخص باللغة العربية
Based on the hypothesis that the $X(3872)$ exotic hadron is a mixture of $chi_{c1}(2P)$ and other states and that its prompt hadroproduction predominately proceeds via its $chi_{c1}(2P)$ component, we calculate the prompt-$X(3872)$ polarization at the CERN LHC through next-to-leading order in $alpha_s$ within the factorization formalism of nonrelativistic QCD, including both the color-singlet $^3!P_1^{[1]}$ and color-octet $^3!S_1^{[8]}$ $cbar c$ Fock states. We also consider the polarization of the $J/psi$ produced by the subsequent $X(3872)$ decay. We predict that, under ATLAS, CMS, and LHCb experimental conditions, the $X(3872)$ is largely longitudinally polarized, while the $J/psi$ is largely transversely polarized. We propose that the LHC experiments perform such polarization measurements to pin down the nature of the $X(3872)$ and other $X$, $Y$, $Z$ exotic states with non-zero spin.
The production of the X(3872) as a hadronic molecule in hadron colliders is clarified. We show that the conclusion of Bignamini et al., Phys. Rev. Lett. 103 (2009) 162001, that the production of the X(3872) at high $p_T$ implies a non-molecular struc
LHC is expected to be a top quark factory. If the fundamental Planck scale is near a TeV, then we also expect the top quarks to be produced from black holes via Hawking radiation. In this paper we calculate the cross sections for top quark production
Next-to-leading order predictions matched to parton showers are compared with recent ATLAS data on inclusive photon production and CMS data on associated photon and jet production in pp and pPb collisions at different centre-of-mass energies of the L
We evaluate the production cross sections of $X(3872)$ at the LHC and Tevatron at NLO in $alpha_s$ in NRQCD by assuming that the short-distance production proceeds dominantly through its $chi_{c1}$ component in our $chi_{c1}mbox{-}D^0bar{D}^{*0}$ mix
In this work, we investigate the prompt $J/psi$ production in associated with top quark pair to leading order in the nonrelativistic QCD factorization formalism at the LHC with $sqrt{s} =13$ TeV. In addition to the contribution from direct $J/psi$ pr