ﻻ يوجد ملخص باللغة العربية
In this paper, we perform a more general analysis on the discrete effects of some boundary schemes of the popular one- to three-dimensional DnQq multiple-relaxation-time lattice Boltzmann model for convection-diffusion equation (CDE). Investigated boundary schemes include anti-bounce-back(ABB) boundary scheme, bounce-back(BB) boundary scheme and non-equilibrium extrapolation(NEE) boundary scheme. In the analysis, we adopt a transform matrix $textbf{M}$ constructed by natural moments in the evolution equation, and the result of ABB boundary scheme is consistent with the existing work of orthogonal matrix $textbf{M}$. We also find that the discrete effect does not rely on the choice of transform matrix, and obtain a relation to determine some of the relaxation-time parameters which can be used to eliminate the numerical slip completely under some assumptions. In this relation, the weight coefficient is considered as an adjustable parameter which makes the parameter adjustment more flexible. The relaxation factors associated with second moments can be used to eliminate the numerical slip of ABB boundary scheme and BB boundary scheme while the numerical slip can not be eliminated of NEE boundary scheme. Furthermore, we extend the relations to complex-valued CDE, several numerical examples are used to test the relations.
The discrete effect on the boundary condition has been a fundamental topic for the lattice Boltzmann method in simulating heat and mass transfer problems. In previous works based on the halfway anti-bounce-back (ABB) boundary condition for convection
In this paper, a multiple-distribution-function lattice Boltzmann method (MDF-LBM) with multiple-relaxation-time model is proposed for incompressible Navier-Stokes equations (NSEs) which are considered as the coupled convection-diffusion equations (C
We present an energy-conserving multiple-relaxation-time finite difference lattice Boltzmann model for compressible flows. This model is based on a 16-discrete-velocity model. The collision step is first calculated in the moment space and then mapped
In this paper, we develop a discrete unified gas kinetic scheme (DUGKS) for general nonlinear convection-diffusion equation (NCDE), and show that the NCDE can be recovered correctly from the present model through the Chapman-Enskog analysis. We then
A multiple-relaxation-time discrete Boltzmann model (DBM) is proposed for multicomponent mixtures, where compressible, hydrodynamic, and thermodynamic nonequilibrium effects are taken into account. It allows the specific heat ratio and the Prandtl nu