ترغب بنشر مسار تعليمي؟ اضغط هنا

Ab-initio calculations of laser-atom interactions reveal harmonics feedback during macroscopic propagation

170   0   0.0 ( 0 )
 نشر من قبل Jerome Kasparian
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We couple the full 3D ab initio quantum evolution of the light pulse polarization in interaction with an atom with a propagation model to simulate the propagation of ultrashort laser pulses over macroscopic dimensions, in the presence of self-generated harmonics up to order 11. We evidence a clear feedback of the generated harmonics on propagation, with an influence on the ionization probability as well as the yield of the harmonic generation itself.

قيم البحث

اقرأ أيضاً

Efficient ab initio calculations of correlated materials at finite temperature require compact representations of the Greens functions both in imaginary time and Matsubara frequency. In this paper, we introduce a general procedure which generates spa rse sampling points in time and frequency from compact orthogonal basis representations, such as Chebyshev polynomials and intermediate representation (IR) basis functions. These sampling points accurately resolve the information contained in the Greens function, and efficient transforms between different representations are formulated with minimal loss of information. As a demonstration, we apply the sparse sampling scheme to diagrammatic $GW$ and GF2 calculations of a hydrogen chain, of noble gas atoms and of a silicon crystal.
The coupling between electrons and phonons in solids plays a central role in describing many phenomena, including superconductivity and thermoelecric transport. Calculations of this coupling are exceedingly demanding as they necessitate integrations over both the electron and phonon momenta, both of which span the Brillouin zone of the crystal, independently. We present here an ab initio method for efficiently calculating electron-phonon mediated transport properties by dramatically accelerating the computation of the double integrals with a dual interpolation technique that combines maximally localized Wannier functions with symmetry-adapted plane waves. The performance gain in relation to the current state-of-the-art Wannier-Fourier interpolation is approximately 2n_s times M, where n_s is the number of crystal symmetry operations and M, a number in the range 5 - 60, governs the expansion in star functions. We demonstrate with several examples how our method performs some ab initio calculations involving electron-phonon interactions.
For the prototypical diatomic-molecule - diatomic molecule interactions H2-HX and H2-X2, where X = F, Cl, Br, quantum-chemical ab initio calculations are carried out on grids of the configuration space, which permit a spherical-harmonics representati on of the potential energy surfaces (PESs). Dimer geometries are considered for sets of representative leading configurations, and the PESs are analyzed in terms of isotropic and anisotropic contributions. The leading configurations are individuated by selecting a minimal set of mutual orientations of molecules needed to build the spherical-harmonic expansion on geometrical and symmetry grounds. The terms of the PESs corresponding to repulsive and bonding dimer geometries and the averaged isotropic term, for each pair of interacting molecules, are compared with representations in terms of a potential function proposed by Pirani et al. (see Chem. Phys. Lett. 2004, 394, 37-44 and references therein). Connections of the involved parameters with molecular properties provide insight into the nature of the interactions.
We propose a novel storage scheme for three-nucleon (3N) interaction matrix elements relevant for the normal-ordered two-body approximation used extensively in ab initio calculations of atomic nuclei. This scheme reduces the required memory by approx imately two orders of magnitude, which allows the generation of 3N interaction matrix elements with the standard truncation of $E_{3max}=28$, well beyond the previous limit of 18. We demonstrate that this is sufficient to obtain ground-state energies in $^{132}$Sn converged to within a few MeV with respect to the $E_{3max}$ truncation. In addition, we study the asymptotic convergence behavior and perform extrapolations to the un-truncated limit. Finally, we investigate the impact of truncations made when evolving free-space 3N interactions with the similarity renormalization group. We find that the contribution of blocks with angular momentum $J_{rm rel}>9/2$ is dominated by a basis-truncation artifact which vanishes in the large-space limit, so these computationally expensive components can be neglected. For the two sets of nuclear interactions employed in this work, the resulting binding energy of $^{132}$Sn agrees with the experimental value within theoretical uncertainties. This work enables converged ab initio calculations of heavy nuclei.
Warm dense matter (WDM) -- an exotic state of highly compressed matter -- has attracted high interest in recent years in astrophysics and for dense laboratory systems. At the same time, this state is extremely difficult to treat theoretically. This i s due to the simultaneous appearance of quantum degeneracy, Coulomb correlations and thermal effects, as well as the overlap of plasma and condensed phases. Recent breakthroughs are due to the successful application of density functional theory (DFT) methods which, however, often lack the necessary accuracy and predictive capability for WDM applications. The situation has changed with the availability of the first textit{ab initio} data for the exchange-correlation free energy of the warm dense uniform electron gas (UEG) that were obtained by quantum Monte Carlo (QMC) simulations, for recent reviews, see Dornheim textit{et al.}, Phys. Plasmas textbf{24}, 056303 (2017) and Phys. Rep. textbf{744}, 1-86 (2018). In the present article we review recent further progress in QMC simulations of the warm dense UEG: namely, textit{ab initio} results for the static local field correction $G(q)$ and for the dynamic structure factor $S(q,omega)$. These data are of key relevance for the comparison with x-ray scattering experiments at free electron laser facilities and for the improvement of theoretical models. In the second part of this paper we discuss simulations of WDM out of equilibrium. The theoretical approaches include Born-Oppenheimer molecular dynamics, quantum kinetic theory, time-dependent DFT and hydrodynamics. Here we analyze strengths and limitations of these methods and argue that progress in WDM simulations will require a suitable combination of all methods. A particular role might be played by quantum hydrodynamics, and we concentrate on problems, recent progress, and possible improvements of this method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا