ترغب بنشر مسار تعليمي؟ اضغط هنا

Should Observations be Grouped for Effective Monitoring of Multivariate Process Variability?

59   0   0.0 ( 0 )
 نشر من قبل Inez Maria Zwetsloot
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

A multivariate dispersion control chart monitors changes in the process variability of multiple correlated quality characteristics. In this article, we investigate and compare the performance of charts designed to monitor variability based on individual and grouped multivariate observations. We compare one of the most well-known methods for monitoring individual observations -- a multivariate EWMA chart proposed by Huwang et al -- to various charts based on grouped observations. In addition, we compare charts based on monitoring with overlapping and nonoverlapping subgroups. We recommend using charts based on overlapping subgroups when monitoring with subgroup data. The effect of subgroup size is also investigated. Steady-state average time to signal is used as performance measure. We show that monitoring methods based on individual observations are the quickest in detecting sustained shifts in the process variability. We use a simulation study to obtain our results and illustrated these with a case study.



قيم البحث

اقرأ أيضاً

96 - Paul T. von Hippel 2017
Researchers often impute continuous variables under an assumption of normality, yet many incomplete variables are skewed. We find that imputing skewed continuous variables under a normal model can lead to bias; the bias is usually mild for popular es timands such as means, standard deviations, and linear regression coefficients, but the bias can be severe for more shape-dependent estimands such as percentiles or the coefficient of skewness. We test several methods for adapting a normal imputation model to accommodate skewness, including methods that transform, truncate, or censor (round) normally imputed values, as well as methods that impute values from a quadratic or truncated regression. None of these modifications reliably reduces the biases of the normal model, and some modifications can make the biases much worse. We conclude that, if one has to impute a skewed variable under a normal model, it is usually safest to do so without modifications -- unless you are more interested in estimating percentiles and shape that in estimated means, variance, and regressions. In the conclusion, we briefly discuss promising developments in the area of continuous imputation models that do not assume normality.
A multivariate control chart is designed to monitor process parameters of multiple correlated quality characteristics. Often data on multivariate processes are collected as individual observations, i.e. as vectors one at the time. Various control cha rts have been proposed in the literature to monitor the covariance matrix of a process when individual observations are collected. In this study, we review this literature; we find 30 relevant articles from the period 1987-2019. We group the articles into five categories. We observe that less research has been done on CUSUM, high-dimensional and non-parametric type control charts for monitoring the process covariance matrix. We describe each proposed method, state their advantages, and limitations. Finally, we give suggestions for future research.
In this article, we consider a non-parametric Bayesian approach to multivariate quantile regression. The collection of related conditional distributions of a response vector Y given a univariate covariate X is modeled using a Dependent Dirichlet Proc ess (DDP) prior. The DDP is used to introduce dependence across x. As the realizations from a Dirichlet process prior are almost surely discrete, we need to convolve it with a kernel. To model the error distribution as flexibly as possible, we use a countable mixture of multidimensional normal distributions as our kernel. For posterior computations, we use a truncated stick-breaking representation of the DDP. This approximation enables us to deal with only a finitely number of parameters. We use a Block Gibbs sampler for estimating the model parameters. We illustrate our method with simulation studies and real data applications. Finally, we provide a theoretical justification for the proposed method through posterior consistency. Our proposed procedure is new even when the response is univariate.
Inverse probability of treatment weighting (IPTW) is a popular propensity score (PS)-based approach to estimate causal effects in observational studies at risk of confounding bias. A major issue when estimating the PS is the presence of partially obs erved covariates. Multiple imputation (MI) is a natural approach to handle missing data on covariates, but its use in the PS context raises three important questions: (i) should we apply Rubins rules to the IPTW treatment effect estimates or to the PS estimates themselves? (ii) does the outcome have to be included in the imputation model? (iii) how should we estimate the variance of the IPTW estimator after MI? We performed a simulation study focusing on the effect of a binary treatment on a binary outcome with three confounders (two of them partially observed). We used MI with chained equations to create complete datasets and compared three ways of combining the results: combining treatment effect estimates (MIte); combining the PS across the imputed datasets (MIps); or combining the PS parameters and estimating the PS of the average covariates across the imputed datasets (MIpar). We also compared the performance of these methods to complete case (CC) analysis and the missingness pattern (MP) approach, a method which uses a different PS model for each pattern of missingness. We also studied empirically the consistency of these 3 MI estimators. Under a missing at random (MAR) mechanism, CC and MP analyses were biased in most cases when estimating the marginal treatment effect, whereas MI approaches had good performance in reducing bias as long as the outcome was included in the imputation model. However, only MIte was unbiased in all the studied scenarios and Rubins rules provided good variance estimates for MIte.
Monitoring several correlated quality characteristics of a process is common in modern manufacturing and service industries. Although a lot of attention has been paid to monitoring the multivariate process mean, not many control charts are available for monitoring the covariance matrix. This paper presents a comprehensive overview of the literature on control charts for monitoring the covariance matrix in a multivariate statistical process monitoring (MSPM) framework. It classifies the research that has previously appeared in the literature. We highlight the challenging areas for research and provide some directions for future research.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا