ﻻ يوجد ملخص باللغة العربية
We analyze the effect of the sedimentation of $^{22}$Ne on the local white dwarf luminosity function by studying scenarios under different Galactic metallicity models. We make use of an up-to-date population synthesis code based on Monte Carlo techniques to derive the synthetic luminosity function. Constant solar metallicity models are not able to simultaneously reproduce the peak and cut-off of the white dwarf luminosity function. The extra release of energy due to $^{22}$Ne sedimentation piles up more objects in brighter bins of the faint end of the luminosity function. The contribution of a single burst thick disk population increases the number of stars in the magnitude interval centered around $M_{rm bol}=15.75$. Among the metallicity models studied, the one following a Twarogs profile is disposable. Our best fit model was obtained when a dispersion in metallicities around the solar metallicity value is considered along with a $^{22}$Ne sedimentation model, a thick disk contribution and an age of the thin disk of $8.8pm0.2$ Gyr. Our population synthesis model is able to reproduce the local white dwarf luminosity function with a high degree of precision when a dispersion in metallicities around the solar value model is adopted. Although the effects of $^{22}$Ne sedimentation are only marginal and the contribution of a thick disk population is minor, both of them help in better fitting the peak and the cut-off regions of the white dwarf luminosity function.
Because of the large neutron excess of $^{22}$Ne, this isotope rapidly sediments in the interior of the white dwarfs. This process releases an additional amount of energy, thus delaying the cooling times of the white dwarf. This influences the ages o
We perform an analysis of the single white dwarf and the double degenerate binary populations in the solar neighbourhood following a population synthesis approach to investigate the effects of unresolved double degenerates in the white dwarf luminosi
We report on the white dwarf cooling sequence of the old globular cluster NGC 6752, which is chemically complex and hosts a blue horizontal branch. This is one of the last globular cluster white dwarf (WD) cooling sequences accessible to imaging by t
We present follow-up spectroscopy of 711 white dwarfs within 100 pc, and present a detailed model atmosphere analysis of the 100 pc white dwarf sample in the SDSS footprint. Our spectroscopic follow-up is complete for 83% of the white dwarfs hotter t
The analysis of noble gases in primitive meteorites has shown the existence of anomalous isotopic abundances when compared with the average Solar System values. In particular it has been found that some graphite grains contain a unexpected high abund