ﻻ يوجد ملخص باللغة العربية
We study Fayet-Iliopoulos (FI) terms of 5-dimensional supersymmetric $U(1)$ gauge theory compactified on $S^1/Z_2$. In this model, loop diagrams including matter hypermultiplets and brane chiral multiplets induce FI-terms localized at the fixed points. Localized FI-terms lead instabilities of bulk modes. The form of the induced FI-terms strictly depends on wave function profiles of matter multiplets. It is a non-trivial question whether the vacuum of 1-loop corrected potential is stable under radiative corrections. We investigate this issue and it is found that the stable configuration is obtained when the bulk zero modes shield the brane charge completely.
We study Fayet-Iliopoulos (FI) terms of six-dimensional supersymmetric Abelian gauge theory compactified on a $T^2/Z_2$ orbifold. Such orbifold compactifications can lead to localized FI-terms and instability of bulk zero modes. We study 1-loop corre
We study magnetized orbifold models. We assume the localized Fayet-Iliopoulos terms and the corresponding gauge background. Such terms lead to strong localization of zero-mode wavefunc- tions. In this setup, we compute quark mass matrices.
The U(1) vector multiplet theory with the Fayet-Iliopoulos (FI) term is one of the oldest and simplest models for spontaneously broken rigid supersymmetry. Lifting the FI term to supergravity requires gauged $R$-symmetry, as was first demonstrated in
We study the consistency of orbifold field theories and clarify to what extent the condition of having an anomaly-free spectrum of zero-modes is sufficient to guarantee it. Preservation of gauge invariance at the quantum level is possible, although a
We generalize the description of the d=4 Attractor Mechanism based on an effective black hole (BH) potential to the presence of a gauging which does not modify the derivatives of the scalars and does not involve hypermultiplets. The obtained results