ترغب بنشر مسار تعليمي؟ اضغط هنا

Soft breathing modes in neutron--rich nuclei with the subtracted second random--phase approximation

88   0   0.0 ( 0 )
 نشر من قبل Danilo Gambacurta
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the isoscalar response related to breathing modes with particular attention being paid to low-lying excitations in neutron--rich nuclei. We use the subtracted second random--phase approximation (SSRPA) to describe microscopically the response. By increasing the neutron excess, we study the evolution of the response in Ca isotopes going from $^{40}$Ca to $^{48}$Ca and to $^{60}$Ca as well as in $N=20$ isotones going from $^{40}$Ca to $^{36}$S and to $^{34}$Si. Finally, the case of $^{68}$Ni is investigated. We predict soft monopole modes in neutron--rich nuclei which are driven by neutron excitations. At variance with dipole pygmy modes, these neutron excitations are not only strongly dominant at the surface of the nucleus but over its entire volume. The effect of the mixing with two particle-two hole configurations induced by the SSRPA model is analyzed. The properties of such soft neutron modes are investigated in terms of their excitation energies, transition densities and wave--function components. Their collectivity is also discussed as a function of the isospin asymmetry and of the mass of the nucleus. The link between such low--energy compression modes and a compressibility modulus introduced for neutron--rich infinite matter is finally studied.



قيم البحث

اقرأ أيضاً

A characteristic feature of collective and particle-hole excitations in neutron-rich nuclei is that many of them couple to unbound neutron in continuum single-particle orbits. The continuum random phase approximation (cRPA) is a powerful many-body me thod that describes such excitations, and it provides a scheme to evaluate transition strengths from the ground state. In an attempt to apply cRPA to the radiative neutron capture reaction, we formulate in the present study an extended scheme of cRPA that describes gamma-transitions from the excited states under consideration, which decay to low-lying excited states as well as the ground state. This is achieved by introducing a non-local one-body operator which causes transitions to a low-lying excited state, and describing a density-matrix response against this operator. As a demonstration of this new scheme, we perform numerical calculation for dipole, quadrupole, and octupole excitations in $^{140}$Sn, and discuss E1 and E2 transitions decaying to low-lying $2^{+}_{1,2}$ and $3^{-}_{1}$ states. The results point to cases where the branching ratio to the low-lying states is larger than or comparable with that to the ground state. We discuss key roles of collectivity and continuum orbits in both initial and final states.
We develop a fully self-consistent subtracted second random-phase approximation for charge-exchange processes with Skyrme energy-density functionals. As a first application, we study Gamow-Teller excitations in the doubly-magic nucleus $^{48}$Ca, the lightest double-$beta$ emitter that could be used in an experiment, and in $^{78}$Ni, the single-beta-decay rate of which is known. The amount of Gamow-Teller strength below 20 or 30 MeV is considerably smaller than in other energy-density-functional calculations and agrees better with experiment in $^{48}$Ca, as does the beta-decay rate in $^{78}$Ni. These important results, obtained without textit{ad hoc} quenching factors, are due to the presence of two-particle -- two-hole configurations. Their density progressively increases with excitation energy, leading to a long high-energy tail in the spectrum, a fact that may have implications for the computation of nuclear matrix elements for neutrinoless double-$beta$ decay in the same framework.
We calculate the ground, first intrinsic excited states and density distribution for neutron-rich thorium and uranium isotopes, within the framework of relativistic mean field(RMF) approach using axially deformed basis. The total nucleon densities ar e calculated, from which the cluster-structures inside the parent nuclei are determined. The possible modes of decay, like {alpha}-decay and b{eta} -decay are analyzed. We find the neutron-rich isotopes are stable against {alpha}-decay, however they are very much unstable against b{eta} -decay. The life time of these nuclei predicted to be tens of second against b{eta} -decay.
We make use of a subtraction procedure, introduced to overcome double--counting problems in beyond--mean--field theories, in the second random--phase--approximation (SRPA) for the first time. This procedure guarantees the stability of SRPA (so that a ll excitation energies are real). We show that the method fits perfectly into nuclear density--functional theory. We illustrate applications to the monopole and quadrupole response and to low--lying $0^+$ and $2^+$ states in the nucleus $^{16}$O. We show that the subtraction procedure leads to: (i) results that are weakly cutoff dependent; (ii) a considerable reduction of the SRPA downwards shift with respect to the random--phase approximation (RPA) spectra (systematically found in all previous applications). This implementation of the SRPA model will allow a reliable analysis of the effects of 2 particle--2 hole configurations ($2p2h$) on the excitation spectra of medium--mass and heavy nuclei.
The occurrence of a pygmy dipole resonance in proton rich Ar-32 and Ar-34 is studied using the unitary correlator operator method interaction Vucom, based on Argonne V18. Predictions from the random phase approximation (RPA) and the shell model in a no-core basis are compared. It is found that the inclusion of configuration mixing up to two-particle--two-holes broadens the pygmy strength slightly and reduces sensibly its strength, as compared to the RPA predictions. For Ar-32 a clear peak associated with a pygmy resonance is found. For Ar-34, the pygmy states are obtained close to the giant dipole resonance and mix with it.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا