ﻻ يوجد ملخص باللغة العربية
We investigate supercurrent interference patterns measured as a function of magnetic field in ballistic graphene Josephson junctions. At high doping, the expected $Phi_{0}$-periodic Fraunhofer pattern is observed, indicating a uniform current distribution. Close to the Dirac point, we find anomalous interference patterns with an apparent 2$Phi_{0}$ periodicity, similar to that predicted for topological Andreev bound states carrying a charge of $e$ instead of $2e$. This feature persists with increasing temperature, ruling out a non-sinusoidal current-phase relationship. It also persists in junctions in which sharp vacuum edges are eliminated. Our results indicate that the observed behavior may originate from an intrinsic property of ballistic graphene Josephson junctions, though the exact mechanism remains unclear.
Hybrid graphene-superconductor devices have attracted much attention since the early days of graphene research. So far, these studies have been limited to the case of diffusive transport through graphene with poorly defined and modest quality graphen
The magneto-electrostatic tailoring of the supercurrent in quantum point contact ballistic Josephson junctions is demonstrated. An etched InAs-based heterostructure is laterally contacted to superconducting niobium leads and the existence of two etch
The current-phase relation (CPR) of a Josephson junction (JJ) determines how the supercurrent evolves with the superconducting phase difference across the junction. Knowledge of the CPR is essential in order to understand the response of a JJ to vari
Short ballistic graphene Josephson junctions sustain superconducting current with a non-sinusoidal current-phase relation up to a critical current threshold. The current-phase relation, arising from proximitized superconductivity, is gate-voltage tun
One of the consequences of Cooper pairs having a finite momentum in the interlayer of a Josephson junction, is $pi$-junction behavior. The finite momentum can either be due to an exchange field in ferromagnetic Josephson junctions, or due to the Zeem