ترغب بنشر مسار تعليمي؟ اضغط هنا

Cluster Cosmology with the Velocity Distribution Function of the HeCS-SZ Sample

82   0   0.0 ( 0 )
 نشر من قبل Michelle Ntampaka
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We apply the Velocity Distribution Function (VDF) to a sample of Sunyaev-Zeldovich (SZ)-selected clusters, and we report preliminary cosmological constraints in the $sigma_8$-$Omega_m$ cosmological parameter space. The VDF is a forward-modeled test statistic that can be used to constrain cosmological models directly from galaxy cluster dynamical observations. The method was introduced in Ntampaka et al. (2017) and employs line-of-sight velocity measurements to directly constrain cosmological parameters; it is less sensitive to measurement error than a standard halo mass function approach. The method is applied to the Hectospec Survey of Sunyaev-Zeldovich-Selected Clusters (HeCS-SZ) sample, which is a spectroscopic follow up of a Planck-selected sample of 83 galaxy clusters. Credible regions are calculated by comparing the VDF of the observed cluster sample to that of mock observations, yielding $mathcal{S}_8 equiv sigma_8 left(Omega_m/0.3right)^{0.25} = 0.751pm0.037$. These constraints are in tension with the Planck Cosmic Microwave Background (CMB) TT fiducial value, which lies outside of our 95% credible region, but are in agreement with some recent analyses of large scale structure that observe fewer massive clusters than are predicted by the Planck fiducial cosmological parameters.

قيم البحث

اقرأ أيضاً

235 - F. Mayet , R. Adam , P. Ade 2019
The main limiting factor of cosmological analyses based on thermal Sunyaev-Zeldovich (SZ) cluster statistics comes from the bias and systematic uncertainties that affect the estimates of the mass of galaxy clusters. High-angular resolution SZ observa tions at high redshift are needed to study a potential redshift or morphology dependence of both the mean pressure profile and of the mass-observable scaling relation used in SZ cosmological analyses. The NIKA2 camera is a new generation continuum instrument installed at the IRAM 30-m telescope. With a large field of view, a high angular resolution and a high-sensitivity, the NIKA2 camera has unique SZ mapping capabilities. In this paper, we present the NIKA2 SZ large program, aiming at observing a large sample of clusters at redshifts between 0.5 and 0.9, and the characterization of the first cluster oberved with NIKA2.
We perform a cross validation of the cluster catalog selected by the red-sequence Matched-filter Probabilistic Percolation algorithm (redMaPPer) in Dark Energy Survey year 1 (DES-Y1) data by matching it with the Sunyaev-Zeldovich effect (SZE) selecte d cluster catalog from the South Pole Telescope SPT-SZ survey. Of the 1005 redMaPPer selected clusters with measured richness $hatlambda>40$ in the joint footprint, 207 are confirmed by SPT-SZ. Using the mass information from the SZE signal, we calibrate the richness--mass relation using a Bayesian cluster population model. We find a mass trend $lambdapropto M^{B}$ consistent with a linear relation ($Bsim1$), no significant redshift evolution and an intrinsic scatter in richness of $sigma_{lambda} = 0.22pm0.06$. At low richness SPT-SZ confirms fewer redMaPPer clusters than expected. We interpret this richness dependent deficit in confirmed systems as due to the increased presence at low richness of low mass objects not correctly accounted for by our richness-mass scatter model, which we call contaminants. At a richness $hat lambda=40$, this population makes up $>$12$%$ (97.5 percentile) of the total population. Extrapolating this to a measured richness $hat lambda=20$ yields $>$22$%$ (97.5 percentile). With these contamination fractions, the predicted redMaPPer number counts in different plausible cosmologies are compatible with the measured abundance. The presence of such a population is also a plausible explanation for the different mass trends ($Bsim0.75$) obtained from mass calibration using purely optically selected clusters. The mean mass from stacked weak lensing (WL) measurements suggests that these low mass contaminants are galaxy groups with masses $sim3$-$5times 10^{13} $ M$_odot$ which are beyond the sensitivity of current SZE and X-ray surveys but a natural target for SPT-3G and eROSITA.
We present the analysis of the luminosity function of a large sample of galaxy clusters from the Northern Sky Optical Cluster Survey, using latest data from the Sloan Digital Sky Survey. Our global luminosity function (down to M_r<= -16) does not sho w the presence of an upturn at faint magnitudes, while we do observe a strong dependence of its shape on both richness and cluster-centric radius, with a brightening of M^* and an increase of the dwarf to giant ratio with richness, indicating that more massive systems are more efficient in creating/retaining a population of dwarf satellites. This is observed both within physical (0.5 R_200) and fixed (0.5 Mpc) apertures, suggesting that the trend is either due to a global effect, operating at all scales, or to a local one but operating on even smaller scales. We further observe a decrease of the relative number of dwarf galaxies towards the cluster center; this is most probably due to tidal collisions or collisional disruption of the dwarfs since merging processes are inhibited by the high velocity dispersions in cluster cores and, furthermore, we do not observe a strong dependence of the bright end on the environment. We find indication that the dwarf to giant ratio decreases with increasing redshift, within 0.07<z<0.2. We also measure a trend for stronger suppression of faint galaxies (below M^*+2) with increasing redshift in poor systems, with respect to more massive ones, indicating that the evolutionary stage of less massive galaxies depends more critically on the environment. Finally we point out that the luminosity function is far from universal; hence the uncertainties introduced by the different methods used to build a composite function may partially explain the variety of faint-end slopes reported in the literature as well as, in some cases, the presence of a faint-end upturn.
The Atacama Cosmology Telescope (ACT) is currently observing the cosmic microwave background with arcminute resolution at 148 GHz, 218 GHz, and 277 GHz. In this paper, we present ACTs first results. Data have been analyzed using a maximum-likelihood map-making method which uses B-splines to model and remove the atmospheric signal. It has been used to make high-precision beam maps from which we determine the experiments window functions. This beam information directly impacts all subsequent analyses of the data. We also used the method to map a sample of galaxy clusters via the Sunyaev-Zeldovich (SZ) effect, and show five clusters previously detected with X-ray or SZ observations. We provide integrated Compton-y measurements for each cluster. Of particular interest is our detection of the z = 0.44 component of A3128 and our current non-detection of the low-redshift part, providing strong evidence that the further cluster is more massive as suggested by X-ray measurements. This is a compelling example of the redshift-independent mass selection of the SZ effect.
262 - Kaustuv Basu 2019
Sunyaev-Zeldovich (SZ) effects were first proposed in the 1970s as tools to identify the X-ray emitting hot gas inside massive clusters of galaxies and obtain their velocities relative to the cosmic microwave background (CMB). Yet it is only within t he last decade that they have begun to significantly impact astronomical research. Thanks to the rapid developments in CMB instrumentation, measurement of the dominant thermal signature of the SZ effects has become a routine tool to find and characterize large samples of galaxy clusters and to seek deeper understanding of several important astrophysical processes via high-resolution imaging studies of many targets. With the notable exception of the Planck satellite and a few combinations of ground-based observatories, much of this SZ revolution has happened in the photometric mode, where observations are made at one or two frequencies in the millimeter regime to maximize the cluster detection significance and minimize the foregrounds. Still, there is much more to learn from detailed and systematic analyses of the SZ spectra across multiple wavelengths, specifically in the submillimeter (>300 GHz) domain. The goal of this Science White Paper is to highlight this particular aspect of SZ research, point out what new and potentially groundbreaking insights can be obtained from these studies, and emphasize why the coming decade can be a golden era for SZ spectral measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا