ترغب بنشر مسار تعليمي؟ اضغط هنا

Field Emission Characterization of MoS2 Nanoflowers

88   0   0.0 ( 0 )
 نشر من قبل Filippo Giubileo Dr
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nanostructured materials have wide potential applicability as field emitters due to their high aspect ratio. We hydrothermally synthesized MoS2 nanoflowers on copper foil and characterized their field emission properties, by applying a tip-anode configuration in which a tungsten tip with curvature radius down to 30-100nm has been used as the anode to measure local properties from small areas down to 1-100um2. We demonstrate that MoS2 nanoflowers can be competitive with other well-established field emitters. Indeed, we show that a stable field emission current can be measured with a turn-on field as low as 12 V um-1 and a field enhancement factor up to 880 at 600nm cathode-anode separation distance.



قيم البحث

اقرأ أيضاً

The growth of single-layer MoS2 with chemical vapor deposition is an established method that can produce large-area and high quality samples. In this article, we investigate the geometrical and optical properties of hundreds of individual single-laye r MoS2 crystallites grown on a highly-polished sapphire substrate. Most of the crystallites are oriented along the terraces of the sapphire substrate and have an area comprised between 10 {mu}m2 and 60 {mu}m2. Differential reflectance measurements performed on these crystallites show that the area of the MoS2 crystallites has an influence on the position and broadening of the B exciton while the orientation does not influence the A and B excitons of MoS2. These measurements demonstrate that differential reflectance measurements have the potential to be used to characterize the homogeneity of large area CVD grown samples.
Monolayer transition metal dichalcogenides (TMD) have numerous potential applications in ultrathin electronics and photonics. The exposure of TMD based devices to light generates photo-carriers resulting in an enhanced conductivity, which can be effe ctively used, e.g., in photodetectors. If the photo-enhanced conductivity persists after removal of the irradiation, the effect is known as persistent photoconductivity (PPC). Here we show that ultraviolet light (wavelength = 365 nm) exposure induces an extremely long-living giant PPC (GPPC) in monolayer MoS2 (ML-MoS2) field-effect transistors (FET) with a time constant of ~30 days. Furthermore, this effect leads to a large enhancement of the conductivity up to a factor of 107. In contrast to previous studies in which the origin of the PPC was attributed to extrinsic reasons such as trapped charges in the substrate or adsorbates, we unambiguously show that the GPPC arises mainly from the intrinsic properties of ML-MoS2 such as lattice defects that induce a large amount of localized states in the forbidden gap. This finding is supported by a detailed experimental and theoretical study of the electric transport in TMD based FETs as well as by characterization of ML-MoS2 with scanning tunneling spectroscopy, high-resolution transmission electron microscopy, and photoluminescence measurements. The obtained results provide a basis towards the defect-based engineering of the electronic and optical properties of TMDs for device applications.
249 - G.Wang , C.R. Zhu , B.L. Liu 2013
We use micro-Raman and photoluminescence (PL) spectroscopy at 300K to investigate the influence of uniaxial tensile strain on the vibrational and optoelectronic properties of monolayer and bilayer MoS2 on a flexible substrate. The initially degenerat e E^1_{2g} Raman mode is split into a doublet as a direct consequence of the strain applied to MoS2 through Van der Waals coupling at the sample-substrate interface. We observe a strong shift of the direct band gap of 48meV/(% of strain) for the monolayer and 46meV/% for the bilayer, whose indirect gap shifts by 86meV/%. We find a strong decrease of the PL polarization linked to optical valley initialization for both monolayer and bilayer samples, indicating that scattering to the spin-degenerate Gamma valley plays a key role.
We report the realization of field-effect transistors (FETs) made with chemically synthesized multilayer 2D crystal semiconductor MoS2. Electrical properties such as the FET mobility, subthreshold swing, on/off ratio, and contact resistance of chemic ally synthesized (s-) MoS2 are indistinguishable from that of mechanically exfoliated (x-) MoS2, however flat-band voltages are different, possibly due to polar chemical residues originating in the transfer process. Electron diffraction studies and Raman spectroscopy show the structural similarity of s-MoS2 to x-MoS2. This initial report on the behavior and properties of s-MoS2 illustrates the feasibility of electronic devices using synthetic layered 2D crystal semiconductors.
InSb nanowire arrays with different geometrical parameters, diameter and pitch, are fabricated by top-down etching process on Si(100) substrates. Field emission properties of InSb nanowires are investigated by using a nano-manipulated tungsten probe- tip as anode inside the vacuum chamber of a scanning electron microscope. Stable field emission current is reported, with a maximum intensity extracted from a single nanowire of about 1$mu A$, corresponding to a current density as high as 10$^4$ A/cm$^2$. Stability and robustness of nanowire is probed by monitoring field emission current for about three hours. By tuning the cathode-anode separation distance in the range 500nm - 1300nm, the field enhancement factor and the turn-on field exhibit a non-monotonic dependence, with a maximum enhancement $beta simeq $ 78 and a minimum turn-on field $E_{ON} simeq$ 0.033 V/nm for a separation d =900nm. The reduction of spatial separation between nanowires and the increase of diameter cause the reduction of the field emission performance, with reduced field enhancement ($beta <$ 60) and increased turn-on field ($E_{ON} simeq $ 0.050 V/nm). Finally, finite element simulation of the electric field distribution in the system demonstrates that emission is limited to an effective area near the border of the nanowire top surface, with annular shape and maximum width of 10 nm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا