ﻻ يوجد ملخص باللغة العربية
The progenitors of Type IIP supernovae (SNe) are known to be red supergiants, but their properties are not well determined. We employ hydrodynamical modelling to investigate the explosion characteristics of eight Type IIP supernovae, and the properties of their progenitor stars. We create evolutionary models using the {sc MESA} stellar evolution code, explode these models, and simulate the optical lightcurves using the {sc STELLA} code. We fit the optical lightcurves, Fe II 5169AA velocity, and photospheric velocity, to the observational data. Recent research has suggested that the progenitors of Type IIP SNe have a zero age main sequence (ZAMS) mass not exceeding $sim18$ M$_{odot}$. Our fits give a progenitor ZAMS mass $leq18$ M$_{odot}$ for seven of the supernovae. Where previous progenitor mass estimates exist, from various sources such as hydrodynamical modelling, multi-wavelength observations, or semi-analytic calculations, our modelling generally tends towards the lower mass values. This result is in contrast to results from previous hydrodynamical modelling, but is consistent with those obtained using general-relativistic radiation-hydrodynamical codes. We do find that one event, SN 2015ba, has a progenitor whose mass is closer to 24 M$_{odot}$ , although we are unable to fit it well. We also derive the amount of $^{56}$Ni required to reproduce the tail of the lightcurve, and find values generally larger than previous estimates. Overall, we find that it is difficult to characterize the explosion by a single parameter, and that a range of parameters is needed.
Type IIP supernovae (SNe IIP), which represent the most common class of core-collapse (CC) SNe, show a rapid increase in continuum polarization just after entering the tail phase. This feature can be explained by a highly asymmetric helium core, whic
Type IIP Supernovae (SNe) are expected to arise from Red Supergiant stars (RSGs). These stars have observed mass-loss rates that span more than two orders of magnitude, from $< 10^{-6}$ solar masses yr$^{-1}$ to almost $ 10^{-4} $ solar masses yr$^{-
Nebular phase spectra of core-collapse supernovae (SNe) provide critical and unique information on the progenitor massive star and its explosion. We present a set of 1-D steady-state non-local thermodynamic equilibrium radiative transfer calculations
We use natural seeing imaging of SN 2013ej in M74 to identify a progenitor candidate in archival {it Hubble Space Telescope} + ACS images. We find a source coincident with the SN in the {it F814W}-filter, however the position of the progenitor candid
Type IIn Supernovae (SNe IIn) are rare events, constituting only a few percent of all core-collapse SNe, and the current sample of well observed SNe IIn is small. Here, we study the four SNe IIn observed by the Caltech Core-Collapse Project (CCCP). T