ﻻ يوجد ملخص باللغة العربية
Imaging and manipulating individual atoms with submicrometer separation can be instrumental for quantum simulation of condensed matter Hamiltonians and quantum computation with neutral atoms. Quantum gas microscope experiments in most cases rely on quite costly solutions. Here we present an open-source design of a microscope objective for atomic strontium consisting solely of off-the-shelf lenses that is diffraction-limited for 461${,}$nm light. A prototype built with a simple stacking design is measured to have a resolution of 0.63(4)${,mu}$m, which is in agreement with the predicted value. This performance, together with the near diffraction-limited performance for 532${,}$nm light makes this design useful for both quantum gas microscopes and optical tweezer experiments with strontium. Our microscope can easily be adapted to experiments with other atomic species such as erbium, ytterbium, and dysprosium, as well as Rydberg experiments with rubidium.
Conventional microscope objective lenses are diffraction limited, which means that they cannot resolve features smaller than half the illumination wavelength. Under white light illumination, such resolution limit is about 250-300 nm for an ordinary m
We demonstrate a neutron tomography technique with sub-micrometer spatial resolution. Our method consists of measuring neutron diffraction spectra using a double crystal diffractometer as a function of sample rotation and then using a phase retrieval
We describe the measurement of the secular motion of a levitated nanoparticle in a Paul trap with a CMOS camera. This simple method enables us to reach signal-to-noise ratios as good as 10$^{6}$ with a displacement sensitivity better than 10$^{-16},m
Based on image encoding in a serial-temporal format, optical time-stretch imaging entails a stringent requirement of state-of-the- art fast data acquisition unit in order to preserve high image resolution at an ultrahigh frame rate --- hampering the
We describe a two-color pump-probe scanning magneto-optical Kerr effect (MOKE) microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolutio