ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalized Gibbs Ensembles in Discrete Quantum Gravity

248   0   0.0 ( 0 )
 نشر من قبل Isha Kotecha
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Maximum entropy principle and Souriaus symplectic generalization of Gibbs states have provided crucial insights leading to extensions of standard equilibrium statistical mechanics and thermodynamics. In this brief contribution, we show how such extensions are instrumental in the setting of discrete quantum gravity, towards providing a covariant statistical framework for the emergence of continuum spacetime. We discuss the significant role played by information-theoretic characterizations of equilibrium. We present the Gibbs state description of the geometry of a tetrahedron and its quantization, thereby providing a statistical description of the characterizing quanta of space in quantum gravity. We use field coherent states for a generalized Gibbs state to write an effective statistical field theory that perturbatively generates 2-complexes, which are discrete spacetime histories in several quantum gravity approaches.

قيم البحث

اقرأ أيضاً

We consider the non-equilibrium dynamics in isolated systems, described by quantum field theories (QFTs). After being prepared in a density matrix that is not an eigenstate of the Hamiltonian, such systems are expected to relax locally to a stationar y state. In a presence of local conservation laws, these stationary states are believed to be described by appropriate generalized Gibbs ensembles. Here we demonstrate that in order to obtain a correct description of the stationary state, it is necessary to take into account conservation laws that are not (ultra-)local in the usual sense of QFT, but fulfil a significantly weaker form of locality. We discuss implications of our results for integrable QFTs in one spatial dimension.
The question whether global symmetries can be realized in quantum-gravity-matter-systems has far-reaching phenomenological consequences. Here, we collect evidence that within an asymptotically safe context, discrete global symmetries of the form $mat hbb{Z}_n$, $n>4$, cannot be realized in a near-perturbative regime. In contrast, an effective-field-theory approach to quantum gravity might feature such symmetries, providing a mechanism to generate mass hierarchies in the infrared without the need for additional fine-tuning.
We show explicitly that the nonminimal coupling between the scalar field and the Ricci scalar in 2D dilaton gravity can be recast in the form of kinetic gravity braiding (KGB). This is as it should be, because KGB is the 2D version of the Horndeski t heory. We also determine all the static solutions with a linearly time-dependent scalar configuration in the shift-symmetric KGB theories in 2D.
Generalized Gibbs ensembles have been used as powerful tools to describe the steady state of integrable many-particle quantum systems after a sudden change of the Hamiltonian. Here we demonstrate numerically, that they can be used for a much broader class of problems. We consider integrable systems in the presence of weak perturbations which both break integrability and drive the system to a state far from equilibrium. Under these conditions, we show that the steady state and the time-evolution on long time-scales can be accurately described by a (truncated) generalized Gibbs ensemble with time-dependent Lagrange parameters, determined from simple rate equations. We compare the numerically exact time evolutions of density matrices for small systems with a theory based on block-diagonal density matrices (diagonal ensemble) and a time-dependent generalized Gibbs ensemble containing only small number of approximately conserved quantities, using the one-dimensional Heisenberg model with perturbations described by Lindblad operators as an example.
Within the context of scalar-tensor gravity, we explore the generalized second law (GSL) of gravitational thermodynamics. We extend the action of ordinary scalar-tensor gravity theory to the case in which there is a non-minimal coupling between the s calar field and the matter field (as chameleon field). Then, we derive the field equations governing the gravity and the scalar field. For a FRW universe filled only with ordinary matter, we obtain the modified Friedmann equations as well as the evolution equation of the scalar field. Furthermore, we assume the boundary of the universe to be enclosed by the dynamical apparent horizon which is in thermal equilibrium with the Hawking temperature. We obtain a general expression for the GSL of thermodynamics in the scalar-tensor gravity model. For some viable scalar-tensor models, we first obtain the evolutionary behaviors of the matter density, the scale factor, the Hubble parameter, the scalar field, the deceleration parameter as well as the effective equation of state (EoS) parameter. We conclude that in most of the models, the deceleration parameter approaches a de Sitter regime at late times, as expected. Also the effective EoS parameter acts like the LCDM model at late times. Finally, we examine the validity of the GSL for the selected models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا