ترغب بنشر مسار تعليمي؟ اضغط هنا

Expanding the sample of radio minihalos in galaxy clusters

189   0   0.0 ( 0 )
 نشر من قبل Simona Giacintucci
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Radio minihalos are diffuse synchrotron sources of unknown origin found in the cool cores of some galaxy clusters. We use GMRT and VLA data to expand the sample of minihalos by reporting three new minihalo detections (A 2667, A 907 and PSZ1 G139.61+24.20) and confirming minihalos in five clusters (MACS J0159.8-0849, MACS J0329.6-0211, RXC J2129.6+0005, AS 780 and A 3444). With these new detections and confirmations, the sample now stands at 23, the largest sample to date. For consistency, we also reanalyze archival VLA 1.4 GHz observations of 7 known minihalos. We revisit possible correlations between the non-thermal emission and the thermal properties of their cluster hosts. Consistently with our earlier findings from a smaller sample, we find no strong relation between the minihalo radio luminosity and the total cluster mass. Instead, we find a strong positive correlation between the minihalo radio power and X-ray bolometric luminosity of the cool core (r<70 kpc). This supplements our earlier result that most if not all cool cores in massive clusters contain a minihalo. Comparison of radio and Chandra X-ray images indicates that the minihalo emission is typically confined by concentric sloshing cold fronts in the cores of most of our clusters, supporting the hypothesis that minihalos arise from electron reacceleration by turbulence caused by core gas sloshing. Taken together, our findings suggest that the origin of minihalos should be closely related to the properties of thermal plasma in cluster cool cores.

قيم البحث

اقرأ أيضاً

We investigate the occurrence of radio minihalos --- diffuse radio sources of unknown origin observed in the cores of some galaxy clusters --- in a statistical sample of 58 clusters drawn from the Planck Sunyaev-Zeldovich cluster catalog using a mass cut ($M_{500}>6times 10^{14} M_{odot}$). We supplement our statistical sample with a similarly-sized non-statistical sample mostly consisting of clusters in the ACCEPT X-ray catalog with suitable X-ray and radio data, which includes lower-mass clusters. Where necessary (for 9 clusters), we reanalyzed the Very Large Array archival radio data to determine if a mihinalo is present. Our total sample includes all 28 currently known and recently discovered radio minihalos, including 6 candidates. We classify clusters as cool-core or non-cool core according to the value of the specific entropy floor in the cluster center, rederived or newly derived from the Chandra X-ray density and temperature profiles where necessary (for 27 clusters). Contrary to the common wisdom that minihalos are rare, we find that almost all cool cores - at least 12 out of 15 (80%) - in our complete sample of massive clusters exhibit minihalos. The supplementary sample shows that the occurrence of minihalos may be lower in lower-mass cool-core clusters. No minihalos are found in non-cool-cores or warm cores. These findings will help test theories of the origin of minihalos and provide information on the physical processes and energetics of the cluster cores.
Cool cores of some galaxy clusters exhibit faint radio minihalos. Their origin is unclear; their study has been limited by their small number. We undertook a systematic search for minihalos in a large sample of X-ray luminous clusters with high-quali ty radio data. In this paper, we report four new minihalos (A 478, ZwCl 3146, RXJ 1532.9+3021 and A 2204), and five candidates, found in the reanalyzed archival Very Large Array observations. The radio luminosities of our minihalos and candidates are in the range $10^{23-25}$ W Hz$^{-1}$ at 1.4 GHz, consistent with this type of radio sources. Their sizes (40-160 kpc in radius) are somewhat smaller than those of the previously known minihalos. We combine our new detections with previously known minihalos, obtaining a total sample of 21 objects, and briefly compare the cluster radio properties to the average X-ray temperature and the total masses estimated from Planck. We find that nearly all clusters hosting minihalos are hot and massive. Beyond that, there is no clear correlation between the minihalo radio power and cluster temperature or mass (in contrast with the giant radio halos found in cluster mergers, whose radio luminosity correlates with the cluster mass). Chandra X-ray images indicate gas sloshing in the cool cores of most of our clusters, with minihalos contained within the sloshing regions in many of them. This supports the hypothesis that radio-emitting electrons are reaccelerated by sloshing. Advection of relativistic electrons by the sloshing gas may also play a role in the formation of the less-extended minihalos.
Galaxy clusters structure, dominated by dark matter, is traced by member galaxies in the optical and hot intra-cluster medium (ICM) in X-rays. We compare the radial distribution of these components and determine the mass-to-light ratio vs. system mas s relation. We use 14 clusters from the REXCESS sample which is representative of clusters detected in X-ray surveys. Photometric observations with the Wide Field Imager on the 2.2m MPG/ESO telescope are used to determine the number density profiles of the galaxy distribution out to $r_{200}$. These are compared to electron density profiles of the ICM obtained using XMM-Newton, and dark matter profiles inferred from scaling relations and an NFW model. While red sequence galaxies trace the total matter profile, the blue galaxy distribution is much shallower. We see a deficit of faint galaxies in the central regions of massive and regular clusters, and strong suppression of bright and faint blue galaxies in the centres of cool-core clusters, attributable to ram pressure stripping of gas from blue galaxies in high density regions of ICM and disruption of faint galaxies due to galaxy interactions. We find a mass-to-light ratio vs. mass relation within $r_{200}$ of $left(3.0pm0.4right) times 10^2, h,mathrm{M}_{odot},mathrm{L}_{odot}^{-1}$ at $10^{15},mathrm{M}_{odot}$ with slope $0.16 pm 0.14$, consistent with most previous results.
Non-thermal properties of galaxy clusters have been studied with detailed and deep radio images in comparison with X-ray data. While much progress has been made, most of the studied clusters are at a relatively low redshift (z < 0.3). We here investi gate the evolutionary properties of the non-thermal cluster emission using two statistically complete samples at z > 0.3. We obtained short JVLA observations at L-band of the statistically complete sample of very X-ray luminous clusters from the Massive Cluster Survey (MACS) presented by Ebeling et al. (2010), and redshift range 0.3 - 0.5. We add to this list the complete sample of the 12 most distant MACS clusters (z > 0.5) presented in Ebeling et al. (2007). Most clusters show evidence of emission in the radio regime. We present the radio properties of all clusters in our sample and show images of newly detected diffuse sources. A radio halo is detected in 19 clusters, and five clusters contain a relic source. Most of the brightest cluster galaxies (BCG) in relaxed clusters show radio emission with powers typical of FRII radio galaxies, and some are surrounded by a radio mini-halo. The high frequency of radio emission from the BCG in relaxed clusters suggests that BCG feedback mechanisms are in place already at z about 0.6. The properties of radio halos and the small number of detected relics suggest redshift evolution in the properties of diffuse sources. The radio power (and size) of radio halos could be related to the number of past merger events in the history of the system. In this scenario, the presence of a giant and high-power radio halo is indicative of an evolved system with a large number of past major mergers.
Emission of AGNs and neutral pion decay - are the two most natural mechanisms, that could make a galaxy cluster be a source of gamma-rays in the GeV regime. We revisited this problem by using 52.5-month FERMI-LAT data above 10 GeV and stacking 55 clu sters from the HIFLUGS sample of the X-ray brightest clusters. The choice of >10 GeV photons is optimal from the point of view of angular resolution, while the sample selection optimizes the chances of detecting signatures of the neutral pion decay, arising from hadronic interactions of relativistic protons with an intra-cluster medium, which scale with the X-ray flux. In the stacked data we detected a signal for the central 0.25 deg circle at the level of 4.3 sigma. An evidence for a spatial extent of the signal is marginal. A subsample of cool-core clusters has higher count rate 1.9+/-0.3 per cluster compared to the subsample of non-cool core clusters 1.3+/-0.2. Several independent arguments suggest that the contribution of AGNs to the observed signal is substantial if not dominant. No strong support for the large contribution of pion decay was found. In terms of a limit on the relativistic protons energy density, we got an upper limit of ~1.5% relative to the gas thermal energy density, provided that the spectrum of relativistic protons is hard (s=4.1 in dN/dp=p^-s). This estimate assumes that relativistic and thermal components are mixed. For softer spectra the limits are weaker.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا