ﻻ يوجد ملخص باللغة العربية
h-BN and Ga2O3 are two promising semiconductor materials. However, the band alignment of the Ga2O3/h-BN heterojunction has not been identified, hindering device development. In this study, the heterojunction was prepared by metalorganic chemical vapor deposition and pulsed laser deposition. Transmission electron microscopy confirmed sharp heterointerface and revealed structural evolution as amorphous-Ga2O3 grew thicker on lattice mismatched h-BN. The valence and conduction band offsets were determined by high-resolution X-ray photoemission spectroscopy to be 1.75 and 3.35-3.65 eV, respectively, corresponding to a type-II heterojunction. The extremely large type-II band offsets along with indirect bandgap of Ga2O3 may be leveraged for exceptional electron confinement and storage.
Vertical $pn$ heterojunction diodes were prepared by plasma-assisted molecular beam epitaxy of unintentionally-doped $p$-type SnO layers with hole concentrations ranging from $p=10^{18}$ to $10^{19}$cm$^{-3}$ on unintentionally-doped $n$-type $beta$-
By combining temperature-dependent resistivity and Hall effect measurements, we investigate donor state energy in Si-doped b{eta}-Ga2O3 films grown using metal-organic vapor phase epitaxy (MOVPE). High magnetic field Hall effect measurements (H = +/-
Semiconductor heterostructures are fundamental building blocks for many important device applications. The emergence of two-dimensional semiconductors opens up a new realm for creating heterostructures. As the bandgaps of transition metal dichalcogen
The electronic structure of heterointerfaces play a pivotal role in their device functionality. Recently, highly crystalline ultrathin films of superconducting NbN have been integrated by molecular beam epitaxy with the semiconducting GaN. We use sof
Strain induced band gap deformations of hydrogenated/fluorinated graphene and hexagonal BN sheet have been investigated using first principles density functional calculations. Within harmonic approximation, the deformation is found to be higher for h