ﻻ يوجد ملخص باللغة العربية
The coflow scheduling problem has emerged as a popular abstraction in the last few years to study data communication problems within a data center. In this basic framework, each coflow has a set of communication demands and the goal is to schedule many coflows in a manner that minimizes the total weighted completion time. A coflow is said to complete when all its communication needs are met. This problem has been extremely well studied for the case of complete bipartite graphs that model a data center with full bisection bandwidth and several approximation algorithms and effective heuristics have been proposed recently. In this work, we study a slightly different model of coflow scheduling in general graphs (to capture traffic between data centers) and develop practical and efficient approximation algorithms for it. Our main result is a randomized 2 approximation algorithm for the single path and free path model, significantly improving prior work. In addition, we demonstrate via extensive experiments that the algorithm is practical, easy to implement and performs well in practice.
This paper provides three nearly-optimal algorithms for scheduling $t$ jobs in the $mathsf{CLIQUE}$ model. First, we present a deterministic scheduling algorithm that runs in $O(mathsf{GlobalCongestion} + mathsf{dilation})$ rounds for jobs that are s
Coflow scheduling improves data-intensive application performance by improving their networking performance. State-of-the-art online coflow schedulers in essence approximate the classic Shortest-Job-First (SJF) scheduling by learning the coflow size
We study the problem of clock synchronization in highly dynamic networks, where communication links can appear or disappear at any time. The nodes in the network are equipped with hardware clocks, but the rate of the hardware clocks can vary arbitrar
Reconfigurable optical topologies are emerging as a promising technology to improve the efficiency of datacenter networks. This paper considers the problem of scheduling opportunistic links in such reconfigurable datacenters. We study the online sett
This paper presents improved approximation algorithms for the problem of multiprocessor scheduling under uncertainty, or SUU, in which the execution of each job may fail probabilistically. This problem is motivated by the increasing use of distribute