ترغب بنشر مسار تعليمي؟ اضغط هنا

Gait transition in swimming

324   0   0.0 ( 0 )
 نشر من قبل Remi Carmigniani
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The skill to swim fast results from the interplay between generating high thrust while minimizing drag. In front crawl, swimmers achieve this goal by adapting their inter-arm coordination according to the race pace. A transition has been observed from a catch-up pattern of coordination (i.e. lag time between the propulsion of the two arms) to a superposition pattern of coordination as the velocity increases. Expert swimmers choose a catch-up coordination pattern at low velocities with a constant relative lag time of glide during the cycle and switch to a maximum propulsion force strategy at higher velocities. This transition is explained using a burst-and-coast model. At low velocities, the choice of coordination can be understood through two parameters: the time of propulsion and the gliding effectiveness. These parameters can characterize a swimmer and help to optimize their technique.



قيم البحث

اقرأ أيضاً

The flexibility of the bacterial flagellar hook is believed to have substantial consequences for microorganism locomotion. Using a simplified model of a rigid flagellum and a flexible hook, we show that the paths of axisymmetric cell bodies driven by a single flagellum in Stokes flow are generically helical. Phase-averaged resistance and mobility tensors are produced to describe the flagellar hydrodynamics, and a helical rod model which retains a coupling between translation and rotation is identified as a distinguished asymptotic limit. A supercritical Hopf bifurcation in the flagellar orientation beyond a critical ratio of flagellar motor torque to hook bending stiffness, which is set by the spontaneous curvature of the flexible hook, the shape of the cell body, and the flagellum geometry, can have a dramatic effect on the cells trajectory through the fluid. Although the equilibrium hook angle can result in a wide variance in the trajectorys helical pitch, we find a very consistent prediction for the trajectorys helical amplitude using parameters relevant to swimming P. aeruginosa cells.
We present a study of the hydrodynamics of an active particle, a model squirmer, in an envi- ronment with a broken rotational symmetry: a nematic liquid crystal. By combining simulations with analytic calculations, we show that the hydrodynamic coupl ing between the squirmer flow field and liquid crystalline director can lead to re-orientation of the swimmers. The preferred orientation depends on the exact details of the squirmer flow field. In a steady state, pushers are shown to swim parallel with the nematic director while pullers swim perpendicular to the nematic director. This behaviour arises solely from hydrodynamic coupling between the squirmer flow field and anisotropic viscosities of the host fluid. Our results suggest that an anisotropic swimming medium can be used to characterise and guide spherical microswimmers in the bulk.
100 - Christophe Eloy 2011
Examining botanical trees, Leonardo da Vinci noted that the total cross-section of branches is conserved across branching nodes. In this Letter, it is proposed that this rule is a consequence of the tree skeleton having a self-similar structure and t he branch diameters being adjusted to resist wind-induced loads.
The persistent motility of the individual constituents in microbial suspensions represents a prime example of so-called active matter systems. Cells consume energy, exert forces and move, overall releasing the constraints of equilibrium statistical m echanics of passive elements and allowing for complex spatio-temporal patterns to emerge. Moreover, when subject to physico-chemical stimuli their collective behaviour often drives large scale instabilities of hydrodynamic nature, with implications for biomixing in natural environments and incipient industrial applications. In turn, our ability for external control of these driving stimuli could be used to govern the emerging patterns. Light, being easily manipulable and, at the same time, an important stimulus for a wide variety of microorganisms, is particularly well suited to this end. In this paper, we will discuss the current state, developments, and some of the emerging advances in the fundamentals and applications of light-induced bioconvection with a focus on recent experimental realisations and modelling efforts.
Motivated by recent experiments demonstrating that motile algae get trapped in draining foams, we study the trajectories of microorganisms confined in model foam channels (section of a Plateau border). We track single Chlamydomonas reinhardtii cells confined in a thin three-circle microfluidic chamber and show that their spatial distribution exhibits strong corner accumulation. Using empirical scattering laws observed in previous experiments (scattering with a constant scattering angle), we next develop a two-dimension geometrical model and compute the phase space of trapped and periodic trajectories of swimmers inside a three-circles billiard. We find that the majority of cell trajectories end up in a corner, providing a geometrical mechanism for corner accumulation. Incorporating the distribution of scattering angles observed in our experiments and including hydrodynamic interactions between the cells and the surfaces into the geometrical model enables us to reproduce the experimental probability density function of micro-swimmers in microfluidic chambers. Both our experiments and models demonstrate therefore that motility leads generically to trapping in complex geometries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا