ترغب بنشر مسار تعليمي؟ اضغط هنا

Suppressed effective viscosity in the bulk intergalactic plasma

65   0   0.0 ( 0 )
 نشر من قبل Irina Zhuravleva
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transport properties, such as viscosity and thermal conduction, of the hot intergalactic plasma in clusters of galaxies, are largely unknown. While for laboratory plasmas these characteristics are derived from the gas density and temperature, such recipes can be fundamentally different for the intergalactic plasma due to a low rate of particle collisions and a weak magnetic field. In numerical simulations, one often cuts through these unknowns by modeling these plasmas as hydrodynamic fluids, even though local, non-hydrodynamic features observed in clusters contradict this assumption. Using deep Chandra observations of the Coma Cluster, we probe gas fluctuations in intergalactic medium down to spatial scales where the transport processes should prominently manifest themselves - at least if hydrodynamic models with pure Coulomb collision rates were indeed adequate. We find that they do not, implying that the effective isotropic viscosity is orders of magnitude smaller than naively expected. This indicates an enhanced collision rate in the plasma due to particle scattering off microfluctuations caused by plasma instabilities, or that the transport processes are anisotropic with respect to local magnetic field. For that reason, numerical models with high Reynolds number appear more consistent with observations. Our results also demonstrate that observations of turbulence in clusters are becoming a branch of astrophysics that can sharpen theoretical views on such plasmas.

قيم البحث

اقرأ أيضاً

74 - R. Yaresko , B. Kampfer 2014
A gravity-scalar model in 5-dim. Riemann space is adjusted to the thermodynamics of SU(3) gauge field theory in the temperature range 1 - 10 $T/T_c$ to calculate holographically the bulk viscosity in 4-dim. Minkowski space. Various settings are compa red, and it is argued that, upon an adjustment of the scalar potential to reproduce exactly the lattice data within a restricted temperature interval above $T_c$, rather robust values of the bulk viscosity to entropy density ratio are obtained.
96 - D. D. Ofengeim 2019
It is well-known that r-mode oscillations of rotating neutron stars may be unstable with respect to the gravitational wave emission. It is highly unlikely to observe a neutron star with the parameters within the instability window, a domain where thi s instability is not suppressed. But if one adopts the `minimal (nucleonic) composition of the stellar interior, a lot of observed stars appear to be within the r-mode instability window. One of the possible solutions to this problem is to account for hyperons in the neutron star core. The presence of hyperons allows for a set of powerful (lepton-free) non-equilibrium weak processes, which increase the bulk viscosity, and thus suppress the r-mode instability. Existing calculations of the instability windows for hyperon NSs generally use reaction rates calculated for the $Sigma^-Lambda$ hyperonic composition via the contact $W$ boson exchange interaction. In contrast, here we employ hyperonic equations of state where the $Lambda$ and $Xi^-$ are the first hyperons to appear (the $Sigma^-$s, if they are present, appear at much larger densities), and consider the meson exchange channel, which is more effective for the lepton-free weak processes. We calculate the bulk viscosity for the non-paired $npemuLambdaXi^-$ matter using the meson exchange weak interaction. A number of viscosity-generating non-equilibrium processes is considered (some of them for the first time in the neutron-star context). The calculated reaction rates and bulk viscosity are approximated by simple analytic formulas, easy-to-use in applications. Applying our results to calculation of the instability window, we argue that accounting for hyperons may be a viable solution to the r-mode problem.
94 - D. Uzdensky 2019
This is a science white paper submitted to the Astro-2020 and Plasma-2020 Decadal Surveys. The paper describes the present status and emerging opportunities in Extreme Plasma Astrophysics -- a study of astrophysically-relevant plasma processes taking place under extreme conditions that necessitate taking into account relativistic, radiation, and QED effects.
The turbulent amplification of cosmic magnetic fields depends upon the material properties of the host plasma. In many hot, dilute astrophysical systems, such as the intracluster medium (ICM) of galaxy clusters, the rarity of particle--particle colli sions allows departures from local thermodynamic equilibrium. These departures exert anisotropic viscous stresses on the plasma motions that inhibit their ability to stretch magnetic-field lines. We present a numerical study of the fluctuation dynamo in a weakly collisional plasma using magnetohydrodynamic (MHD) equations endowed with a field-parallel viscous (Braginskii) stress. When the stress is limited to values consistent with a pressure anisotropy regulated by firehose and mirror instabilities, the Braginskii-MHD dynamo largely resembles its MHD counterpart. If instead the parallel viscous stress is left unabated -- a situation relevant to recent kinetic simulations of the fluctuation dynamo and to the early stages of the dynamo in a magnetized ICM -- the dynamo changes its character, amplifying the magnetic field while exhibiting many characteristics of the saturated state of the large-Prandtl-number (${rm Pm}gtrsim{1}$) MHD dynamo. We construct an analytic model for the Braginskii-MHD dynamo in this regime, which successfully matches magnetic-energy spectra. A prediction of this model, confirmed by our simulations, is that a Braginskii-MHD plasma without pressure-anisotropy limiters will not support a dynamo if the ratio of perpendicular and parallel viscosities is too small. This ratio reflects the relative allowed rates of field-line stretching and mixing, the latter of which promotes resistive dissipation of the magnetic field. In all cases that do exhibit a dynamo, the generated magnetic field is organized into folds that persist into the saturated state and bias the chaotic flow to acquire a scale-dependent spectral anisotropy.
129 - Seiji Zenitani 2017
Basic properties of relativistic magnetic reconnection in electron-positron pair plasmas are investigated by using a particle-in-cell (PIC) simulation. We first revisit a problem by Hesse & Zenitani (2007), who examined the kinetic Ohms law across th e X line. We formulate a relativistic Ohms law by decomposing the stress-energy tensor. Then, the role of the new term, called the heat-flow inertial term, is examined in the PIC simulation data. We further evaluate the energy balance in the reconnection system. These analyses demonstrate physically transparent ways to diagnose relativistic kinetic data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا