ﻻ يوجد ملخص باللغة العربية
We study neutrino flavor oscillations in a plane gravitational wave (GW) with circular polarization. For this purpose we use the solution of the Hamilton-Jacobi equation to get the contribution of GW to the effective Hamiltonian for the neutrino mass eigenstates. Then, considering stochastic GWs, we derive the equation for the density matrix for flavor neutrinos and analytically solve it in the two flavors approximation. The equation for the density matrix for the three neutrino flavors is also derived and solved numerically. In both cases of two and three neutrino flavors, we predict the ratios of fluxes of different flavors at a detector for cosmic neutrinos with relatively low energies owing to the interaction with such a GW background. The obtained results are compared with the recent observation of the flavor content of the astrophysical neutrino fluxes.
We examine the propagation and flavor oscillations of neutrinos under the influence of gravitational waves (GWs) with an arbitrary polarization. We rederive the effective Hamiltonian for the system of three neutrino flavors using the perturbative app
We study spin oscillations of massive Dirac neutrinos in background matter, electromagnetic and gravitational fields. First, using the Dirac equation for a neutrino interacting with the external fields in curved spacetime, we rederive the quasiclassi
We study gravitational waves from the first-order electroweak phase transition in the $SU(N_c)$ gauge theory with $N_f/N_cgg 1$ (large $N_f$ QCD) as a candidate for the walking technicolor, which is modeled by the $U(N_f)times U(N_f)$ linear sigma mo
We study decoherence effects in neutrino flavor oscillations in curved spacetime with particular emphasis on the lensing in a Schwarzschild geometry. Assuming Gaussian wave packets for neutrinos, we argue that the decoherence length derived from the
We investigate the impact of the nonzero neutrino splitting and elastic neutrino-nucleon collisions on fast neutrino oscillations. Our calculations confirm that a small neutrino mass splitting and the neutrino mass hierarchy have very little effect o