ﻻ يوجد ملخص باللغة العربية
Finding complex reaction and transformation pathways, involving many intermediate states, is in general not possible on the DFT level with existing simulation methods due to the very large number of required energy and force evaluations. This is due to a large extent to the fact that for complex reactions, it is not possible to determine which atom in the educt is mapped onto which atom in the product. Trying out all possible atomic index mappings is not feasible because of the factorial increase in the number of possible mappings. By using a penalty function that is invariant under index permutations, we can bias the potential energy surface in such a way that it obtains the characteristics of a structure seeker whose global minimum is the product. By performing a Minima Hopping based global optimization on this biased potential energy surface we can rapidly find intermediate states that lead into the global minimum. Based on this information we can then extract the full reaction pathway. We first demonstrate for a benchmark system, namely LJ38 that our method allows to preferentially find intermediate states that are relevant for the lowest energy reaction pathway and that we, therefore, need a much smaller number of intermediate states than previous methods to find the lowest energy reaction pathway. Finally, we apply the method to two real systems, C60 and C20H20 and show that the found reaction pathway contains valuable information on how the system can be synthesized.
Equilibrium atomic configurations and electron energy structure of ethanol adsorbed on the Si (111) surface are studied by the first-principles density functional theory. Geometry optimization is performed by the total energy minimization method. Sev
Free energy perturbation (FEP) was proposed by Zwanzig more than six decades ago as a method to estimate free energy differences, and has since inspired a huge body of related methods that use it as an integral building block. Being an importance sam
Rare transitions between long-lived stable states are often analyzed in terms of free energy landscapes computed as functions of a few collective variables. Here, using transitions between geometric phases as example, we demonstrate that the effectiv
We consider stochastic models of chemical reaction networks with time dependent input rates and several types of molecules. We prove that, in despite of strong time dependence of input rates, there is a kind of homeostasis phenomenon: far away from i
Machine learning is used to approximate density functionals. For the model problem of the kinetic energy of non-interacting fermions in 1d, mean absolute errors below 1 kcal/mol on test densities similar to the training set are reached with fewer tha