ترغب بنشر مسار تعليمي؟ اضغط هنا

Detailed chemical composition and orbit of the new globular cluster FSR1758: Implications for the accretion of the Sequoia dwarf galaxy onto the Milky Way

57   0   0.0 ( 0 )
 نشر من قبل Sandro Villanova
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present detailed chemical abundances, radial velocities and orbital parameters for FSR 1758, a recently discovered star cluster in the direction of the Galactic Bulge. High resolution (R~42,000) spectra were obtained using the Magellan/Clay telescope instrumented with MIKE echelle spectrogragh, wavelength range 4900-8700 AA. Cluster membership was determined using Gaia DR2 proper motions and confirmed with our radial velocity measurements. We find metallicity consistent with previous photometric estimates for this cluster, [Fe/H] = -1.58+-0.03 dex, with a small, 0.08 dex, spread. While other studies have suggested this massive object may be the result of a previous accretion event, our results are consistent with Milky Way Halo globular clusters with characteristic Na-O anti-correlations found for the metal-poor cluster members. The mean radial velocity of the cluster, +226.8+-1.6 km/s with a small velocity dispersion, 4.9+-1.2 km/s, is typical for globular clusters. We also confirm a retrograde Galactic orbit that appears to be highly eccentric.

قيم البحث

اقرأ أيضاً

We present the physical characterization of FSR 1758, a new large, massive object very recently discovered in the Galactic Bulge. The combination of optical data from the 2nd Gaia Data Release (GDR2) and the DECam Plane Survey (DECaPS), and near-IR d ata from the VISTA Variables in the V{i}a Lactea Extended Survey (VVVX) led to a clean sample of likely members. Based on this integrated dataset, position, distance, reddening, size, metallicity, absolute magnitude, and proper motion of this object are measured. We estimate the following parameters: $alpha=17:31:12$, $delta=-39:48:30$ (J2000), $D=11.5 pm 1.0$ kpc, $E(J-Ks)=0.20 pm 0.03$ mag, $R_c=10$ pc, $R_t=150$ pc, $[Fe/H]=-1.5 pm 0.3$ dex, $M_i < -8.6 pm 1.0$, $mu_{alpha} = -2.85$ mas yr$^{-1}$, and $mu_{delta} = 2.55$ mas yr$^{-1}$. The nature of this object is discussed. If FRS 1758 is a genuine globular cluster, it is one of the largest in the Milky Way, with a size comparable or even larger than that of $omega$ Cen, being also an extreme outlier in the size vs. Galactocentric distance diagram. The presence of a concentration of long-period RR Lyrae variable stars and blue horizontal branch stars suggests that it is a typical metal-poor globular cluster of Oosterhoff type II. Further exploration of a larger surrounding field reveals common proper motion stars, suggesting either tidal debris or that FRS,1758 is actually the central part of a larger extended structure such as a new dwarf galaxy, tentatively named as Scorpius. In either case, this object is remarkable, and its discovery graphically illustrates the possibility to find other large objects hidden in the Galactic Bulge using future surveys.
130 - M. Hanke , A. Koch , C. J. Hansen 2016
We present our detailed spectroscopic analysis of the chemical composition of four red giant stars in the halo globular cluster NGC 6426. We obtained high-resolution spectra using the Magellan2/MIKE spectrograph, from which we derived equivalent widt hs and subsequently computed abundances of 24 species of 22 chemical elements. For the purpose of measuring equivalent widths, we developed a new semi-automated tool, called EWCODE. We report a mean Fe content of [Fe/H] = -2.34$pm$0.05 dex (stat.) in accordance with previous studies. At a mean $alpha$-abundance of [(Mg,Si,Ca)/3 Fe] = 0.39$pm$0.03 dex, NGC 6426 falls on the trend drawn by the Milky Way halo and other globular clusters at comparably low metallicities. The distribution of the lighter $alpha$-elements as well as the enhanced ratio [Zn/Fe] = 0.39 dex could originate from hypernova enrichment of the pre-cluster medium. We find tentative evidence for a spread in the elements Mg, Si, and Zn, indicating an enrichment scenario, where ejecta of evolved massive stars of a slightly older population polluted a newly born younger one. The heavy element abundances in this cluster fit well into the picture of metal-poor globular clusters, which in that respect appear to be remarkably homogeneous. The pattern of the neutron-capture elements heavier than Zn point towards an enrichment history governed by the r-process with only little -if any- sign of s-process contributions. This finding is supported by the striking similarity of our program stars to the metal-poor field star HD 108317.
We use recently derived ages for 61 Milky Way (MW) globular clusters (GCs) to show that their age-metallicity relation (AMR) can be divided into two distinct, parallel sequences at [Fe/H] $ga -1.8$. Approximately one-third of the clusters form an off set sequence that spans the full range in age ($sim 10.5$--13 Gyr), but is more metal rich at a given age by $sim 0.6$ dex in [Fe/H]. All but one of the clusters in the offset sequence show orbital properties that are consistent with membership in the MW disk. They are not simply the most metal-rich GCs, which have long been known to have disk-like kinematics, but they are the most metal-rich clusters at all ages. The slope of the mass-metallicity relation (MMR) for galaxies implies that the offset in metallicity of the two branches of the AMR corresponds to a mass decrement of 2 dex, suggesting host galaxy masses of $M_{*} sim 10^{7-8} msol$ for GCs that belong to the more metal-poor AMR. We suggest that the metal-rich branch of the AMR consists of clusters that formed in-situ in the disk, while the metal-poor GCs were formed in relatively low-mass (dwarf) galaxies and later accreted by the MW. The observed AMR of MW disk stars, and of the LMC, SMC and WLM dwarf galaxies are shown to be consistent with this interpretation, and the relative distribution of implied progenitor masses for the halo GC clusters is in excellent agreement with the MW subhalo mass function predicted by simulations. A notable implication of the bifurcated AMR, is that the identical mean ages and spread in ages, for the metal rich and metal poor GCs are difficult to reconcile with an in-situ formation for the latter population.
In order to characterize 22 new globular cluster (GC) candidates in the Galactic bulge, we present their colour-magnitude diagrams (CMDs) and Ks-band luminosity functions (LFs) using the near-infrared VVV database as well as Gaia-DR2 proper motion da taset. CMDs were obtained, on one hand, after properly decontaminating the observed diagrams from background/foreground disc stars and other sources. On the other hand, CMDs were also obtained based upon star selection in proper motion diagrams. Taking into account our deep CMDs and LFs analyses, we find that 17 out of 22 new GC candidates may be real and should therefore be followed-up, while 5 candidates were discarded from the original sample. We also search for RR Lyrae and Mira variable stars in the fields of these new GC candidates. In particular, we confirm that Minni 40 may be a real cluster. If confirmed by further follow-up analysis, it would be the closest GC to the Galactic centre in projected angular distance, located only 0.5 deg away from it. We consider that it is very difficult to confirm the physical reality of these small, poorly-populated bulge GCs so in many cases alternative techniques are needed to corroborate our findings.
We present a new spectroscopic study of the faint Milky Way satellite Sagittarius II. Using multi-object spectroscopy from the Fibre Large Array Multi Element Spectrograph, we supplement the dataset of Longeard et al. (2020) with 47 newly observed st ars, 19 of which are identified as members of the satellite. These additional member stars are used to put tighter constraints on the dynamics and the metallicity properties of the system. We find a low velocity dispersion of SgrII v = 1.7 +/- 0.5 km s-1, in agreement with the dispersion of Milky Way globular clusters of similar luminosity. We confirm the very metal-poor nature of the satellite ([Fe/H]_SgrII = -2.23 +/- 0.07) and find that the metallicity dispersion of Sgr II is not resolved, reaching only 0.20 at the 95% confidence limit. No star with a metallicity below -2.5 is confidently detected. Therefore, despite the unusually large size of the system (rh = 35.5 +1.4-1.2 pc), we conclude that Sgr II is an old and metal-poor globular cluster of the Milky Way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا