ﻻ يوجد ملخص باللغة العربية
Most theoretical investigations about titanium oxide clusters focus on (TiO$_2$)$_n$. However, many Ti$_n$O$_m$ clusters with $m eq 2n$ are produced experimentally. In this work, first-principles calculations are performed to probe the evolution of Ti$_n$O$_m$ clusters. Our investigations show that for $n=3$-$11$, there exist one relatively stable specie; while for $n=12$-$18$, there are two relatively stable species: Ti-rich and O-rich species. HOMO-LOMO calculations show that the gap can be tuned by changing the size and configurations of Ti$_n$O$_m$ clusters. Our investigation provides insights into the evolution of cluster-to-bulk process in titanium oxide.
We present structure calculations of neutral and singly ionized Mg clusters of up to 30 atoms, as well as Na clusters of up to 10 atoms. The calculations have been performed using density functional theory (DFT) within the local (spin-)density approx
The water-graphite interaction potential proposed recently (Gonzalez et al.emph{J. Phys. Chem. C} textbf{2007}, emph{111}, 14862), the three TIP$N$P ($N=3,:4,:5$) water-water interaction models, and basin-hopping global optimization are used to find
We have measured the spontaneous neutral particle emission from copper cluster anions (Cu$_n^-$, $n=3-6$) stored at cryogenic temperatures in one of the electrostatic ion storage rings of the DESIREE (Double ElectroStatic Ion Ring ExpEriment) facilit
Correlation between geometry, electronic structure and magnetism of solids is both intriguing and elusive. This is particularly strongly manifested in small clusters, where a vast number of unusual structures appear. Here, we employ density functiona
Feynman-Hibbs (FH) effective potentials constitute an appealing approach for investigations of many-body systems at thermal equilibrium since they allow us to easily include quantum corrections within standard classical simulations. In this work we a