ﻻ يوجد ملخص باللغة العربية
Capturing the `mutual gaze of people is essential for understanding and interpreting the social interactions between them. To this end, this paper addresses the problem of detecting people Looking At Each Other (LAEO) in video sequences. For this purpose, we propose LAEO-Net, a new deep CNN for determining LAEO in videos. In contrast to previous works, LAEO-Net takes spatio-temporal tracks as input and reasons about the whole track. It consists of three branches, one for each characters tracked head and one for their relative position. Moreover, we introduce two new LAEO datasets: UCO-LAEO and AVA-LAEO. A thorough experimental evaluation demonstrates the ability of LAEONet to successfully determine if two people are LAEO and the temporal window where it happens. Our model achieves state-of-the-art results on the existing TVHID-LAEO video dataset, significantly outperforming previous approaches. Finally, we apply LAEO-Net to social network analysis, where we automatically infer the social relationship between pairs of people based on the frequency and duration that they LAEO.
Dealing with incomplete information is a well studied problem in the context of machine learning and computational intelligence. However, in the context of computer vision, the problem has only been studied in specific scenarios (e.g., certain types
Nowadays 360 video analysis has become a significant research topic in the field since the appearance of high-quality and low-cost 360 wearable devices. In this paper, we propose a novel LiteFlowNet360 architecture for 360 videos optical flow estimat
Modern methods for counting people in crowded scenes rely on deep networks to estimate people densities in individual images. As such, only very few take advantage of temporal consistency in video sequences, and those that do only impose weak smoothn
Current vision systems are trained on huge datasets, and these datasets come with costs: curation is expensive, they inherit human biases, and there are concerns over privacy and usage rights. To counter these costs, interest has surged in learning f
Convolutional neural network (CNN) models have achieved great success in many fields. With the advent of ResNet, networks used in practice are getting deeper and wider. However, is each layer non-trivial in networks? To answer this question, we train