ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclearity of rapidly decreasing ultradifferentiable functions and time-frequency analysis

203   0   0.0 ( 0 )
 نشر من قبل Chiara Boiti Dr.
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We use techniques from time-frequency analysis to show that the space $mathcal S_omega$ of rapidly decreasing $omega$-ultradifferentiable functions is nuclear for every weight function $omega(t)=o(t)$ as $t$ tends to infinity. Moreover, we prove that, for a sequence $(M_p)_p$ satisfying the classical condition $(M1)$ of Komatsu, the space of Beurling type $mathcal S_{(M_p)}$ when defined with $L^{2},$norms is nuclear exactly when condition $(M2)$ of Komatsu holds.

قيم البحث

اقرأ أيضاً

We study weighted $(PLB)$-spaces of ultradifferentiable functions defined via a weight function (in the sense of Braun, Meise and Taylor) and a weight system. We characterize when such spaces are ultrabornological in terms of the defining weight syst em. This generalizes Grothendiecks classical result that the space $mathcal{O}_M$ of slowly increasing smooth functions is ultrabornological to the context of ultradifferentiable functions. Furthermore, we determine the multiplier spaces of Gelfand-Shilov spaces and, by using the above result, characterize when such spaces are ultrabornological. In particular, we show that the multiplier space of the space of Fourier ultrahyperfunctions is ultrabornological, whereas the one of the space of Fourier hyperfunctions is not.
We develop real Paley-Wiener theorems for classes ${mathcal S}_omega$ of ultradifferentiable functions and related $L^{p}$-spaces in the spirit of Bang and Andersen for the Schwartz class. We introduce results of this type for the so-called Gabor tra nsform and give a full characterization in terms of Fourier and Wigner transforms for several variables of a Paley-Wiener theorem in this general setting, which is new in the literature. We also analyze this type of results when the support of the function is not compact using polynomials. Some examples are given.
In this paper we analyse the structure of the spaces of smooth type functions, generated by elements of arbitrary Hilbert spaces, as a continuation of the research in our previous papers in this series. We prove that these spaces are perfect sequence spaces. As a consequence we describe the tensor structure of sequential mappings on the spaces of smooth type functions and characterise their adjoint mappings. As an application we prove the universality of the spaces of smooth type functions on compact manifolds without boundary.
Given a non-quasianalytic subadditive weight function $omega$ we consider the weighted Schwartz space $mathcal{S}_omega$ and the short-time Fourier transform on $mathcal{S}_omega$, $mathcal{S}_omega$ and on the related modulation spaces with exponent ial weights. In this setting we define the $omega$-wave front set $WF_omega(u)$ and the Gabor $omega$-wave front set $WF^G_omega(u)$ of $uinmathcal{S}_{omega}$, and we prove that they coincide. Finally we look at applications of this wave front set for operators of differential and pseudo-differential type.
Given two systems $P=(P_j(D))_{j=1}^N$ and $Q=(Q_j(D))_{j=1}^M$ of linear partial differential operators with constant coefficients, we consider the spaces ${mathcal E}_omega^P$ and ${mathcal E}_omega^Q$ of $omega$-ultradifferentiable functions with respect to the iterates of the systems $P$ and $Q$ respectively. We find necessary and sufficient conditions, on the systems and on the weights $omega(t)$ and $sigma(t)$, for the inclusion ${mathcal E}_omega^Psubseteq{mathcal E}_sigma^Q$. As a consequence we have a generalization of the classical Theorem of the Iterates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا