ﻻ يوجد ملخص باللغة العربية
We continue to investigate absolutely continuous spectrum of generalized indefinite strings. By following an approach of Deift and Killip, we establish stability of the absolutely continuous spectra of two more model examples of generalized indefinite strings under rather wide perturbations. In particular, one of these results allows us to prove that the absolutely continuous spectrum of the isospectral problem associated with the two-component Camassa-Holm system in a certain dispersive regime is essentially supported on the set $(-infty,-1/2]cup [1/2,infty)$.
We give sufficient conditions for the presence of the absolutely continuous spectrum of a Schrodinger operator on a regular rooted tree without loops (also called regular Bethe lattice or Cayley tree).
We show that a generic quasi-periodic Schrodinger operator in $L^2(mathbb{R})$ has purely singular spectrum. That is, for any minimal translation flow on a finite-dimensional torus, there is a residual set of continuous sampling functions such that f
Given a self-adjoint operator H, a self-adjoint trace class operator V and a fixed Hilbert-Schmidt operator F with trivial kernel and co-kernel, using limiting absorption principle an explicit set of full Lebesgue measure is defined such that for all
By generalising Rudins construction of an aperiodic sequence, we derive new substitution-based structures which have purely absolutely continuous diffraction and mixed dynamical spectrum, with absolutely continuous and pure point parts. We discuss se
We employ some results about continued fraction expansions of Herglotz-Nevanlinna functions to characterize the spectral data of generalized indefinite strings of Stieltjes type. In particular, this solves the corresponding inverse spectral problem through explicit formulas.