ترغب بنشر مسار تعليمي؟ اضغط هنا

On the absolutely continuous spectrum of generalized indefinite strings II

71   0   0.0 ( 0 )
 نشر من قبل Jonathan Eckhardt
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We continue to investigate absolutely continuous spectrum of generalized indefinite strings. By following an approach of Deift and Killip, we establish stability of the absolutely continuous spectra of two more model examples of generalized indefinite strings under rather wide perturbations. In particular, one of these results allows us to prove that the absolutely continuous spectrum of the isospectral problem associated with the two-component Camassa-Holm system in a certain dispersive regime is essentially supported on the set $(-infty,-1/2]cup [1/2,infty)$.



قيم البحث

اقرأ أيضاً

149 - S. Kupin 2008
We give sufficient conditions for the presence of the absolutely continuous spectrum of a Schrodinger operator on a regular rooted tree without loops (also called regular Bethe lattice or Cayley tree).
128 - David Damanik 2019
We show that a generic quasi-periodic Schrodinger operator in $L^2(mathbb{R})$ has purely singular spectrum. That is, for any minimal translation flow on a finite-dimensional torus, there is a residual set of continuous sampling functions such that f or each of these sampling functions, the Schrodinger operator with the resulting potential has empty absolutely continuous spectrum.
442 - Nurulla Azamov 2018
Given a self-adjoint operator H, a self-adjoint trace class operator V and a fixed Hilbert-Schmidt operator F with trivial kernel and co-kernel, using limiting absorption principle an explicit set of full Lebesgue measure is defined such that for all points of this set the wave and the scattering matrices can be defined and constructed unambiguously. Many well-known properties of the wave and scattering matrices and operators are proved, including the stationary formula for the scattering matrix. This new abstract scattering theory allows to prove that for any trace class perturbations of arbitrary self-adjoint operators the singular part of the spectral shift function is an almost everywhere integer-valued function.
By generalising Rudins construction of an aperiodic sequence, we derive new substitution-based structures which have purely absolutely continuous diffraction and mixed dynamical spectrum, with absolutely continuous and pure point parts. We discuss se veral examples, including a construction based on Fourier matrices which yields constant-length substitutions for any length.
108 - Jonathan Eckhardt 2020
We employ some results about continued fraction expansions of Herglotz-Nevanlinna functions to characterize the spectral data of generalized indefinite strings of Stieltjes type. In particular, this solves the corresponding inverse spectral problem through explicit formulas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا