ﻻ يوجد ملخص باللغة العربية
Knowledge gradient is a design principle for developing Bayesian sequential sampling policies to solve optimization problems. In this paper we consider the ranking and selection problem in the presence of covariates, where the best alternative is not universal but depends on the covariates. In this context, we prove that under minimal assumptions, the sampling policy based on knowledge gradient is consistent, in the sense that following the policy the best alternative as a function of the covariates will be identified almost surely as the number of samples grows. We also propose a stochastic gradient ascent algorithm for computing the sampling policy and demonstrate its performance via numerical experiments.
In this article we study the existence and strong consistency of GEE estimators, when the generalized estimating functions are martingales with random coefficients. Furthermore, we characterize estimating functions which are asymptotically optimal.
In this paper, we focus on the problem of stochastic optimization where the objective function can be written as an expectation function over a closed convex set. We also consider multiple expectation constraints which restrict the domain of the prob
It has long been known that for the comparison of pairwise nested models, a decision based on the Bayes factor produces a consistent model selector (in the frequentist sense). Here we go beyond the usual consistency for nested pairwise models, and sh
Archetypal analysis is an unsupervised learning method that uses a convex polytope to summarize multivariate data. For fixed $k$, the method finds a convex polytope with $k$ vertices, called archetype points, such that the polytope is contained in th
We study the law of the iterated logarithm (LIL) for the maximum likelihood estimation of the parameters (as a convex optimization problem) in the generalized linear models with independent or weakly dependent ($rho$-mixing, $m$-dependent) responses