ترغب بنشر مسار تعليمي؟ اضغط هنا

Voltage-induced high-speed DW motion in a synthetic antiferromagnet

92   0   0.0 ( 0 )
 نشر من قبل Maokang Shen
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Voltage-induced motion of a magnetic domain wall (DW) has potential in developing novel devices with ultralow dissipation. However, the speed for the voltage-induced DW motion (VIDWM) in a single ferromagnetic layer is usually very low. In this work, we proposed VIDWM with high speed in a synthetic antiferromaget (SAF). The velocity for the coupled DWs in the SAF is significantly higher than its counterpart in a single ferromagnetic layer. Strong interlayer antiferromagnetic exchange coupling plays a critical role for the high DW velocity since it inhibits the tilting of DW plane with strong Dzyaloshinskii-Moriya interaction. On the other hand, the Walker breakdown of DW motion is also inhibited due to the stabilization of moment orientation under a strong interlayer antiferromagnetic coupling. In theory, the voltage-induced gradient of magnetic anisotropy is proved to be equal to an effective magnetic field that drives DW.



قيم البحث

اقرأ أيضاً

Voltage-induced ferromagnetic resonance (V-FMR) in magnetic tunnel junctions (MTJs) with a W buffer is investigated. Perpendicular magnetic anisotropy (PMA) energy is controlled by both thickness of a CoFeB free layer deposited directly on the W buff er and a post-annealing process at different temperatures. The PMA energy as well as the magnetization damping are determined by analysing field-dependent FMR signals in different field geometries. An optimized MTJ structure enabled excitation of V-FMR at frequencies exceeding 30 GHz. The macrospin modelling is used to analyse the field- and angular-dependence of the V-FMR signal and to support experimental magnetization damping extraction.
94 - T. H. Kim , S. H. Han , B. K. Cho 2018
In the development of spin-based electronic devices, a particular challenge is the manipulation of the magnetic state with high speed and low power consumption. Although research has focused on the current-induced spin-orbit torque based on strong sp in-orbit coupling, the charge-based and the torque-driven devices have fundamental limitations: Joule heating, phase mismatching and overshooting. In this work, we investigate numerically and theoretically alternative switching scenario of antiferromagnetic insulator in one-dimensional confined nanowire sandwiched with two electrodes. As the electric field could break inversion symmetry and induce Dzyaloshinskii-Moriya interaction and pseudo-dipole anisotropy, the resulting spiral texture takes symmetric or antisymmetric configuration due to additional coupling with the crystalline anisotropy. Therefore, by competing two spiral states, we show that the magnetization reversal of antiferromagnets is realized, which is valid in ferromagnetic counterpart. Our finding provides promising opportunities to realize the rapid and energy-efficient electrical manipulation of magnetization for future spin-based electronic devices.
124 - Yihao Yang , Yong Ge , Rujiang Li 2021
The phenomenon of negative refraction generally requires negative refractive indices or phase discontinuities, which can be realized using metamaterials or metasurfaces. Recent theories have proposed a novel mechanism for negative refraction based on synthetic gauge fields, which affect classical waves as if they were charged particles in electromagnetic fields, but this has not hitherto been demonstrated in experiment. Here, we report on the experimental demonstration of gauge-field-induced negative refraction in a twisted bilayer acoustic metamaterial. The bilayer twisting produces a synthetic gauge field for sound waves propagating within a projected two-dimensional geometry, with the magnitude of the gauge field parameterized by the choice of wavenumber along the third dimension. Waveguiding with backward propagating modes is also demonstrated in a trilayer configuration that implements strong gauge fields. These results provide an alternative route to achieving negative refraction in synthetic materials.
Contact hysteresis between sliding interfaces is a widely observed phenomenon from macro- to nano- scale sliding interfaces. Most of such studies are done using an atomic force microscope (AFM) where the sliding speed is a few {mu}m/s. Here, we prese nt a unique study on stiction between the head-disk interface of commercially available hard disk drives, wherein vertical clearance between the head and the disk is of the same order as in various AFM based fundamental studies, but with a sliding speed that is nearly six orders of magnitude higher. We demonstrate that although the electrostatic force (DC or AC voltage) is an attractive force, the AC voltage induced out-of-plane oscillation of the head with respect to disk is able to suppress completely the contact hysteresis.
Domain-wall magnetoresistance and low-frequency noise have been studied in epitaxial antiferromagnetically-coupled [Fe/Cr(001)]_10 multilayers and ferromagnetic Co line structures as a function of DC current intensity. In [Fe/Cr(001)]_10 multilayers a transition from excess to suppressed domain-wall induced 1/f noise above current densities of j_c ~ 2*10^5 A/cm^2 has been observed. In ferromagnetic Co line structures the domain wall related noise remains qualitatively unchanged up to current densities exceeding 10^6A/cm^2. Theoretical estimates of the critical current density for a synthetic Fe/Cr antiferromagnet suggest that this effect may be attributed to current-induced domain-wall motion that occurs via spin transfer torques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا