ﻻ يوجد ملخص باللغة العربية
In a standard computed tomography (CT) image, pixels having the same Hounsfield Units (HU) can correspond to different materials and it is, therefore, challenging to differentiate and quantify materials. Dual-energy CT (DECT) is desirable to differentiate multiple materials, but DECT scanners are not widely available as single-energy CT (SECT) scanners. Here we develop a deep learning approach to perform DECT imaging by using standard SECT data. A deep learning model to map low-energy image to high-energy image using a two-stage convolutional neural network (CNN) is developed. The model was evaluated using patients who received contrast-enhanced abdomen DECT scan with a popular DE application: virtual non-contrast (VNC) imaging and contrast quantification. The HU differences between the predicted and original high-energy CT images are 3.47, 2.95, 2.38 and 2.40 HU for ROIs on the spine, aorta, liver, and stomach, respectively. The HU differences between VNC images obtained from original DECT and deep learning DECT are 4.10, 3.75, 2.33 and 2.92 HU for the 4 ROIs, respectively. The aorta iodine quantification difference between iodine maps obtained from original DECT and deep learning DECT images is 0.9%, suggesting high consistency between the predicted and the original high-energy CT images. This study demonstrates that highly accurate DECT imaging with single low-energy data is achievable by using a deep learning approach. The proposed method can significantly simplify the DECT system design, reducing the scanning dose and imaging cost.
In dual-energy computed tomography (DECT), low- and high- kVp data are collected often over a full-angular range (FAR) of $360^circ$. While there exists strong interest in DECT with low- and high-kVp data acquired over limited-angular ranges (LARs),
Purpose: Dual-energy CT (DECT) has been shown to derive stopping power ratio (SPR) map with higher accuracy than conventional single energy CT (SECT) by obtaining the energy dependence of photon interactions. However, DECT is not as widely implemente
Purpose: Dual-energy CT (DECT) has been used to derive relative stopping power (RSP) map by obtaining the energy dependence of photon interactions. The DECT-derived RSP maps could potentially be compromised by image noise levels and the severity of a
A number of image-processing problems can be formulated as optimization problems. The objective function typically contains several terms specifically designed for different purposes. Parameters in front of these terms are used to control the relativ
Increased noise is a general concern for dual-energy material decomposition. Here, we develop an image-domain material decomposition algorithm for dual-energy CT (DECT) by incorporating an edge-preserving filter into the Local HighlY constrained back