ترغب بنشر مسار تعليمي؟ اضغط هنا

Wavefunction positivization via automatic differentiation

291   0   0.0 ( 0 )
 نشر من قبل Giacomo Torlai
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a procedure to systematically search for a local unitary transformation that maps a wavefunction with a non-trivial sign structure into a positive-real form. The transformation is parametrized as a quantum circuit compiled into a set of one and two qubit gates. We design a cost function that maximizes the average sign of the output state and removes its complex phases. The optimization of the gates is performed through automatic differentiation algorithms, widely used in the machine learning community. We provide numerical evidence for significant improvements in the average sign for a two-leg triangular Heisenberg ladder with next-to-nearest neighbour and ring-exchange interactions. This model exhibits phases where the sign structure can be removed by simple local one-qubit unitaries, but also an exotic Bose-metal phase whose sign structure induces Bose surfaces with a fermionic character and a higher entanglement that requires deeper circuits.



قيم البحث

اقرأ أيضاً

The successes of deep learning, variational inference, and many other fields have been aided by specialized implementations of reverse-mode automatic differentiation (AD) to compute gradients of mega-dimensional objectives. The AD techniques underlyi ng these tools were designed to compute exact gradients to numerical precision, but modern machine learning models are almost always trained with stochastic gradient descent. Why spend computation and memory on exact (minibatch) gradients only to use them for stochastic optimization? We develop a general framework and approach for randomized automatic differentiation (RAD), which can allow unbiased gradient estimates to be computed with reduced memory in return for variance. We examine limitations of the general approach, and argue that we must leverage problem specific structure to realize benefits. We develop RAD techniques for a variety of simple neural network architectures, and show that for a fixed memory budget, RAD converges in fewer iterations than using a small batch size for feedforward networks, and in a similar number for recurrent networks. We also show that RAD can be applied to scientific computing, and use it to develop a low-memory stochastic gradient method for optimizing the control parameters of a linear reaction-diffusion PDE representing a fission reactor.
We present semantic correctness proofs of Automatic Differentiation (AD). We consider a forward-mode AD method on a higher order language with algebraic data types, and we characterise it as the unique structure preserving macro given a choice of der ivatives for basic operations. We describe a rich semantics for differentiable programming, based on diffeological spaces. We show that it interprets our language, and we phrase what it means for the AD method to be correct with respect to this semantics. We show that our characterisation of AD gives rise to an elegant semantic proof of its correctness based on a gluing construction on diffeological spaces. We explain how this is, in essence, a logical relations argument. Finally, we sketch how the analysis extends to other AD methods by considering a continuation-based method.
In mathematics and computer algebra, automatic differentiation (AD) is a set of techniques to evaluate the derivative of a function specified by a computer program. AD exploits the fact that every computer program, no matter how complicated, executes a sequence of elementary arithmetic operations (addition, subtraction, multiplication, division, etc.), elementary functions (exp, log, sin, cos, etc.) and control flow statements. AD takes source code of a function as input and produces source code of the derived function. By applying the chain rule repeatedly to these operations, derivatives of arbitrary order can be computed automatically, accurately to working precision, and using at most a small constant factor more arithmetic operations than the original program. This paper presents AD techniques available in ROOT, supported by Cling, to produce derivatives of arbitrary C/C++ functions through implementing source code transformation and employing the chain rule of differential calculus in both forward mode and reverse mode. We explain its current integration for gradient computation in TFormula. We demonstrate the correctness and performance improvements in ROOTs fitting algorithms.
In this paper we introduce DiffSharp, an automatic differentiation (AD) library designed with machine learning in mind. AD is a family of techniques that evaluate derivatives at machine precision with only a small constant factor of overhead, by syst ematically applying the chain rule of calculus at the elementary operator level. DiffSharp aims to make an extensive array of AD techniques available, in convenient form, to the machine learning community. These including arbitrary nesting of forward/reverse AD operations, AD with linear algebra primitives, and a functional API that emphasizes the use of higher-order functions and composition. The library exposes this functionality through an API that provides gradients, Hessians, Jacobians, directional derivatives, and matrix-free Hessian- and Jacobian-vector products. Bearing the performance requirements of the latest machine learning techniques in mind, the underlying computations are run through a high-performance BLAS/LAPACK backend, using OpenBLAS by default. GPU support is currently being implemented.
In this note, we report the back propagation formula for complex valued singular value decompositions (SVD). This formula is an important ingredient for a complete automatic differentiation(AD) infrastructure in terms of complex numbers, and it is al so the key to understand and utilize AD in tensor networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا