ﻻ يوجد ملخص باللغة العربية
In a growing number of strongly disordered and dense systems, the dynamics of a particle pulled by an external force field exhibits super-diffusion. In the context of glass forming systems, super cooled glasses and contamination spreading in porous medium it was suggested to model this behavior with a biased continuous time random walk. Here we analyze the plume of particles far lagging behind the mean, with the single big jump principle. Revealing the mechanism of the anomaly, we show how a single trapping time, the largest one, is responsible for the rare fluctuations in the system. These non typical fluctuations still control the behavior of the mean square displacement, which is the most basic quantifier of the dynamics in many experimental setups. We show how the initial conditions, describing either stationary state or non-equilibrium case, persist for ever in the sense that the rare fluctuations are sensitive to the initial preparation. To describe the fluctuations of the largest trapping time, we modify Fr{e}chets law from extreme value statistics, taking into consideration the fact that the large fluctuations are very different from those observed for independent and identically distributed random variables.
The big jump principle is a well established mathematical result for sums of independent and identically distributed random variables extracted from a fat tailed distribution. It states that the tail of the distribution of the sum is the same as the
The prediction and control of rare events is an important task in disciplines that range from physics and biology, to economics and social science. The Big Jump principle deals with a peculiar aspect of the mechanism that drives rare events. Accordin
This paper presents an analytical study of the coexistence of different transport regimes in quasi-one-dimensional surface-disordered waveguides (or electron conductors). To elucidate main features of surface scattering, the case of two open modes (c
Rare events in stochastic processes with heavy-tailed distributions are controlled by the big jump principle, which states that a rare large fluctuation is produced by a single event and not by an accumulation of coherent small deviations. The princi
We study numerically the phase-ordering kinetics of the site-diluted and bond-diluted Ising models after a quench from an infinite to a low temperature. We show that the speed of growth of the ordered domains size is non-monotonous with respect to th