ﻻ يوجد ملخص باللغة العربية
A gauged $U(1)_X$ extension of the Standard Model is a simple and consistent framework to naturally incorporate three right-handed neutrinos (RHNs) for generating the observed light neutrino masses and mixing by the type-I seesaw mechanism. We examine the collider testability of the $U(1)_X$ model, both in its minimal form with the conventional charges, as well as with an alternative charge assignment, via the resonant production of the $U(1)_X$ gauge boson ($Z^prime$) and its subsequent decay into a pair of RHNs. We first derive an updated upper limit on the new gauge coupling $g_X$ as a function of the $Z$-boson mass from the latest LHC dilepton searches. Then we identify the maximum possible cross section for the RHN pair-production under these constraints. Finally, we investigate the possibility of having one of the RHNs long-lived, even for a TeV-scale mass. Employing the general parametrization for the light neutrino mass matrix to reproduce the observed neutrino oscillation data, we perform a parameter scan and find a simple formula for the maximum RHN lifetime as a function of the lightest neutrino mass eigenvalue ($m_{rm lightest}$). We find that for $m_{rm lightest}lesssim 10^{-5}$ eV, one of the RHNs in the minimal $U(1)_X$ scenario can be long-lived with a displaced-vertex signature which can be searched for at the LHC and/or with a dedicated long-lived particle detector, such as MATHUSLA. In other words, once a long-lived RHN is observed, we can set an upper bound on the lightest neutrino mass in this model.
We examine the detection prospects for a long-lived bi$ u$o, a pseudo-Dirac bino which is responsible for neutrino masses, at the LHC and at dedicated long-lived particle detectors. The bi$ u$o arises in $U(1)_R$-symmetric supersymmetric models where
We consider minimal $U(1)$ extensions of the Standard Model in which one of the right-handed neutrinos is charged under the new gauge symmetry and plays the role of dark matter. In particular, we perform a detailed phenomenological study for the case
If the fundamental Planck scale is near a TeV, then we should expect to see TeV scale black holes at the LHC. Similarly, if the scale of supersymmetry breaking is sufficiently low, then we might expect to see light supersymmetric particles in the nex
The production rate of right-handed neutrinos from a Standard Model plasma at a temperature above a hundred GeV has previously been evaluated up to NLO in Standard Model couplings (g ~ 2/3) in relativistic (M ~ pi T) and non-relativistic regimes (M >
We propose a model with the left-handed and right-handed continuous Abelian gauge symmetry; $U(1)_Ltimes U(1)_R$. Then three right-handed neutrinos are naturally required to achieve $U(1)_R$ anomaly cancellations, while several mirror fermions are al