ﻻ يوجد ملخص باللغة العربية
The Calar Alto Fiber-fed Echelle spectrograph (CAFE) is a high-resolution spectrographs with high-precision radial velocity capabilities mounted in the 2.2m telescope of Calar Alto Observatory. It suffered from strong degradation after 4 years of operations and it has now been upgraded. The upgrades of the instrument (now named CAFE$_2$) aimed at improving the throughput and stability thanks to the inclusion of a new grating, an active temperature control in the isolated coude room, and a new scrambling system among other minor changes. In this paper, we present the results of the re-commissioning of the instrument and a new pipeline (CAFExtractor) that provides the user with fully reduced data including radial velocity measurements of FGK dwarf stars. We have monitored the upgraded instrument for several months to characterize its main properties and test the new pipeline. It uses part of the CERES code, improves the wavelength calibration and radial velocity extraction (using the HARPS masks adapted), applies nightly drift corrections. The finally reduced spectra are presented in FITS files. The commissioning results show a clear improvement in the instrument performance with respect to the degraded status before the intervention. The room temperature is now stabilized down to 5 mK during one night and below 50 mK over two months. CAFE$_2$ now provides 3 m/s precision on the reference ThAr frames and the on-sky tests provide a radial velocity precision of 8 m/s during one night (for S/N>50). The throughput of the instrument is now back to nominal values with an efficiency of around 15% at 550 nm. The limiting magnitude of the instrument for a 1h exposure and S/N=20 is V=15. With all these properties, CAFE$_2$ enters into the small family of high-resolution spectrographs mounted on 2-4 meter-class telescopes capable of reaching radial velocity precisions below 10 m/s.
The Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) is a high contrast integral field spectrograph (IFS) whose design was driven by WFIRST coronagraph instrument requirements. We present commissioning and operational resul
CYCLOPS2 is an upgrade for the UCLES high resolution spectrograph on the Anglo-Australian Telescope, scheduled for commissioning in semester 2012A. By replacing the 5 mirror Coude train with a Cassegrain mounted fibre-based image slicer CYCLOPS2 simu
We have recently commissioned a novel infrared ($0.9-1.7$ $mu$m) integral field spectrograph (IFS) called the Wide Integral Field Infrared Spectrograph (WIFIS). WIFIS is a unique instrument that offers a very large field-of-view (50$^{primeprime}$ x
Project 1640 is a high contrast near-infrared instrument probing the vicinities of nearby stars through the unique combination of an integral field spectrograph with a Lyot coronagraph and a high-order adaptive optics system. The extraordinary data r
The Minerva-Australis telescope array is a facility dedicated to the follow-up, confirmation, characterisation, and mass measurement of bright transiting planets discovered by the Transiting Exoplanet Survey Satellite (TESS) -- a category in which it