ترغب بنشر مسار تعليمي؟ اضغط هنا

Open-Domain Targeted Sentiment Analysis via Span-Based Extraction and Classification

98   0   0.0 ( 0 )
 نشر من قبل Minghao Hu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Open-domain targeted sentiment analysis aims to detect opinion targets along with their sentiment polarities from a sentence. Prior work typically formulates this task as a sequence tagging problem. However, such formulation suffers from problems such as huge search space and sentiment inconsistency. To address these problems, we propose a span-based extract-then-classify framework, where multiple opinion targets are directly extracted from the sentence under the supervision of target span boundaries, and corresponding polarities are then classified using their span representations. We further investigate three approaches under this framework, namely the pipeline, joint, and collapsed models. Experiments on three benchmark datasets show that our approach consistently outperforms the sequence tagging baseline. Moreover, we find that the pipeline model achieves the best performance compared with the other two models.

قيم البحث

اقرأ أيضاً

Even as pre-trained language encoders such as BERT are shared across many tasks, the output layers of question answering, text classification, and regression models are significantly different. Span decoders are frequently used for question answering , fixed-class, classification layers for text classification, and similarity-scoring layers for regression tasks, We show that this distinction is not necessary and that all three can be unified as span extraction. A unified, span-extraction approach leads to superior or comparable performance in supplementary supervised pre-trained, low-data, and multi-task learning experiments on several question answering, text classification, and regression benchmarks.
109 - Zeyu Li , Yilong Qin , Zihan Liu 2021
We study Comparative Preference Classification (CPC) which aims at predicting whether a preference comparison exists between two entities in a given sentence and, if so, which entity is preferred over the other. High-quality CPC models can significan tly benefit applications such as comparative question answering and review-based recommendations. Among the existing approaches, non-deep learning methods suffer from inferior performances. The state-of-the-art graph neural network-based ED-GAT (Ma et al., 2020) only considers syntactic information while ignoring the critical semantic relations and the sentiments to the compared entities. We proposed sentiment Analysis Enhanced COmparative Network (SAECON) which improves CPC ac-curacy with a sentiment analyzer that learns sentiments to individual entities via domain adaptive knowledge transfer. Experiments on the CompSent-19 (Panchenko et al., 2019) dataset present a significant improvement on the F1 scores over the best existing CPC approaches.
350 - Lu Xu , Yew Ken Chia , Lidong Bing 2021
Aspect Sentiment Triplet Extraction (ASTE) is the most recent subtask of ABSA which outputs triplets of an aspect target, its associated sentiment, and the corresponding opinion term. Recent models perform the triplet extraction in an end-to-end mann er but heavily rely on the interactions between each target word and opinion word. Thereby, they cannot perform well on targets and opinions which contain multiple words. Our proposed span-level approach explicitly considers the interaction between the whole spans of targets and opinions when predicting their sentiment relation. Thus, it can make predictions with the semantics of whole spans, ensuring better sentiment consistency. To ease the high computational cost caused by span enumeration, we propose a dual-channel span pruning strategy by incorporating supervision from the Aspect Term Extraction (ATE) and Opinion Term Extraction (OTE) tasks. This strategy not only improves computational efficiency but also distinguishes the opinion and target spans more properly. Our framework simultaneously achieves strong performance for the ASTE as well as ATE and OTE tasks. In particular, our analysis shows that our span-level approach achieves more significant improvements over the baselines on triplets with multi-word targets or opinions.
The majority of work in targeted sentiment analysis has concentrated on finding better methods to improve the overall results. Within this paper we show that these models are not robust to linguistic phenomena, specifically negation and speculation. In this paper, we propose a multi-task learning method to incorporate information from syntactic and semantic auxiliary tasks, including negation and speculation scope detection, to create English-language models that are more robust to these phenomena. Further we create two challenge datasets to evaluate model performance on negated and speculative samples. We find that multi-task models and transfer learning via language modelling can improve performance on these challenge datasets, but the overall performances indicate that there is still much room for improvement. We release both the datasets and the source code at https://github.com/jerbarnes/multitask_negation_for_targeted_sentiment.
Keyphrases are capable of providing semantic metadata characterizing documents and producing an overview of the content of a document. Since keyphrase extraction is able to facilitate the management, categorization, and retrieval of information, it h as received much attention in recent years. There are three approaches to address keyphrase extraction: (i) traditional two-step ranking method, (ii) sequence labeling and (iii) generation using neural networks. Two-step ranking approach is based on feature engineering, which is labor intensive and domain dependent. Sequence labeling is not able to tackle overlapping phrases. Generation methods (i.e., Sequence-to-sequence neural network models) overcome those shortcomings, so they have been widely studied and gain state-of-the-art performance. However, generation methods can not utilize context information effectively. In this paper, we propose a novelty Span Keyphrase Extraction model that extracts span-based feature representation of keyphrase directly from all the content tokens. In this way, our model obtains representation for each keyphrase and further learns to capture the interaction between keyphrases in one document to get better ranking results. In addition, with the help of tokens, our model is able to extract overlapped keyphrases. Experimental results on the benchmark datasets show that our proposed model outperforms the existing methods by a large margin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا