ﻻ يوجد ملخص باللغة العربية
Deep convolutional neural networks have driven substantial advancements in the automatic understanding of images. Requiring a large collection of images and their associated annotations is one of the main bottlenecks limiting the adoption of deep networks. In the task of medical image segmentation, requiring pixel-level semantic annotations performed by human experts exacerbate this difficulty. This paper proposes a new framework to train a fully convolutional segmentation network from a large set of cheap unreliable annotations and a small set of expert-level clean annotations. We propose a spatially adaptive reweighting approach to treat clean and noisy pixel-level annotations commensurately in the loss function. We deploy a meta-learning approach to assign higher importance to pixels whose loss gradient direction is closer to those of clean data. Our experiments on training the network using segmentation ground truth corrupted with different levels of annotation noise show how spatial reweighting improves the robustness of deep networks to noisy annotations.
Deep neural networks (DNNs) have achieved great success in a wide variety of medical image analysis tasks. However, these achievements indispensably rely on the accurately-annotated datasets. If with the noisy-labeled images, the training procedure w
Medical image segmentation annotations suffer from inter- and intra-observer variations even among experts due to intrinsic differences in human annotators and ambiguous boundaries. Leveraging a collection of annotators opinions for an image is an in
Appearance-based detectors achieve remarkable performance on common scenes, but tend to fail for scenarios lack of training data. Geometric motion segmentation algorithms, however, generalize to novel scenes, but have yet to achieve comparable perfor
Real-world visual recognition requires handling the extreme sample imbalance in large-scale long-tailed data. We propose a divide&conquer strategy for the challenging LVIS task: divide the whole data into balanced parts and then apply incremental lea
Nodule segmentation from breast ultrasound images is challenging yet essential for the diagnosis. Weakly-supervised segmentation (WSS) can help reduce time-consuming and cumbersome manual annotation. Unlike existing weakly-supervised approaches, in t