ترغب بنشر مسار تعليمي؟ اضغط هنا

Rotating Equilibria of Vortex Sheets

60   0   0.0 ( 0 )
 نشر من قبل Bartosz Protas
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider relative equilibrium solutions of the two-dimensional Euler equations in which the vorticity is concentrated on a union of finite-length vortex sheets. Using methods of complex analysis, more specifically the theory of the Riemann-Hilbert problem, a general approach is proposed to find such equilibria which consists of two steps: first, one finds a geometric configuration of vortex sheets ensuring that the corresponding circulation density is real-valued and also vanishes at all sheet endpoints such that the induced velocity field is well-defined; then, the circulation density is determined by evaluating a certain integral formula. As an illustration of this approach, we construct a family of rotating equilibria involving different numbers of straight vortex sheets rotating about a common center of rotation and with endpoints at the vertices of a regular polygon. This equilibrium generalizes the well-known solution involving single rotating vortex sheet. With the geometry of the configuration specified analytically, the corresponding circulation densities are obtained in terms of a integral expression which in some cases lends itself to an explicit evaluation. It is argued that as the number of sheets in the equilibrium configuration increases to infinity, the equilibrium converges in a certain distributional sense to a hollow vortex bounded by a constant-intensity vortex sheet, which is also a known equilibrium solution of the two-dimensional Euler equations.



قيم البحث

اقرأ أيضاً

We consider the rotating and translating equilibria of open finite vortex sheets with endpoints in two-dimensional potential flows. New results are obtained concerning the stability of these equilibrium configurations which complement analogous resul ts known for unbounded, periodic and circular vortex sheets. First, we show that the rotating and translating equilibria of finite vortex sheets are linearly unstable. However, while in the first case unstable perturbations grow exponentially fast in time, the growth of such perturbations in the second case is algebraic. In both cases the growth rates are increasing functions of the wavenumbers of the perturbations. Remarkably, these stability results are obtained entirely with analytical computations. Second, we obtain and analyze equations describing the time evolution of a straight vortex sheet in linear external fields. Third, it is demonstrated that the results concerning the linear stability analysis of the rotating sheet are consistent with the infinite-aspect-ratio limit of the stability results known for Kirchhoffs ellipse (Love 1893; Mitchell & Rossi 2008) and that the solutions we obtained accounting for the presence of external fields are also consistent with the infinite-aspect-ratio limits of the analogous solutions known for vortex patches.
We examine long-time properties of the ideal dynamics of three--dimensional flows, in the presence or not of an imposed solid-body rotation and with or without helicity (velocity-vorticity correlation). In all cases the results agree with the isotrop ic predictions stemming from statistical mechanics. No accumulation of excitation occurs in the large scales, even though in the dissipative rotating case anisotropy and accumulation, in the form of an inverse cascade of energy, are known to occur. We attribute this latter discrepancy to the linearity of the term responsible for the emergence of inertial waves. At intermediate times, inertial energy spectra emerge that differ somewhat from classical wave-turbulence expectations, and with a trace of large-scale excitation that goes away for long times. These results are discussed in the context of partial two-dimensionalization of the flow undergoing strong rotation as advocated by several authors.
This paper concerns feedback stabilization of point vortex equilibria above an inclined thin plate and a three-plate configuration known as the Kasper Wing in the presence of an oncoming uniform flow. The flow is assumed to be potential and is modele d by the 2D incompressible Euler equations. Actuation has the form of blowing and suction localized on the main plate and is represented in terms of a sink-source singularity, whereas measurement of pressure across the plate serves as system output. We focus on point-vortex equilibria forming a one-parameter family with locus approaching the trailing edge of the main plate and show that these equilibria are either unstable or neutrally stable. Using methods of linear control theory we find that the system dynamics linearised around these equilibria are both controllable and observable for almost all actuator and sensor locations. The design of the feedback control is based on the Linear-Quadratic-Gaussian (LQG) compensator. Computational results demonstrate the effectiveness of this control and the key finding is that Kasper Wing configurations are in general more controllable than their single plate counterparts and also exhibit larger basins of attraction under LQG feedback control. The feedback control is then applied to systems with additional perturbations added to the flow in the form of random fluctuations of the angle of attack and a vorticity shedding mechanism. Another important observation is that, in the presence of these additional perturbations, the control remains robust, provided the system does not deviate too far from its original state. Furthermore, introducing a vorticity shedding mechanism tends to enhance the effectiveness of the control. Physical interpretation is provided for the results of the controllability and observability analysis as well as the response of the feedback control to different perturbations.
The so-called Landau-Levich-Deryaguin problem treats the coating flow dynamics of a thin viscous liquid film entrained by a moving solid surface. In this context, we use a simple experimental set-up consisting of a partially-immersed rotating disc in a liquid tank to study the role of inertia, and also curvature, on liquid entrainment. Using water and UCON$^{mbox{{TM}}}$ mixtures, we point out a rich phenomenology in the presence of strong inertia : ejection of multiple liquid sheets on the emerging side of the disc, sheet fragmentation, ligament formation and atomization of the liquid flux entrained over the discs rim. We focus our study on a single liquid sheet and the related average liquid flow rate entrained over a thin disc for various depth-to-radius ratio $h/R < 1$. We show that the liquid sheet is created via a ballistic mechanism as liquid is lifted out of the pool by the rotating disc. We then show that the flow rate in the entrained liquid film is controlled by both viscous and surface tension forces as in the classical Landau-Levich-Deryaguin problem despite the three dimensional, non-uniform and unsteady nature of the flow, and also despite the large values of the film thickness based flow Reynolds number. When the characteristic Froude and Weber numbers become significant, strong inertial effects influence the entrained liquid flux over the disc at large radius-to-immersion-depth ratio, namely via entrainment by the discs lateral walls and via a contribution to the flow rate extracted from the 3D liquid sheet itself, respectively.
We perform direct numerical simulations of rotating Rayleigh--Benard convection of fluids with low ($Pr=0.1$) and high ($Pr=5$) Prandtl numbers in a horizontally periodic layer with no-slip top and bottom boundaries. At both Prandtl numbers, we demon strate the presence of an upscale transfer of kinetic energy that leads to the development of domain-filling vortical structures. Sufficiently strong buoyant forcing and rotation foster the quasi-two-dimensional turbulent state of the flow, despite the formation of plume-like vertical disturbances promoted by so-called Ekman pumping from the viscous boundary layer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا