ﻻ يوجد ملخص باللغة العربية
The intertwining relations between superpartner Hamiltonians are the main ingredients of well known Supersymmetrical Quantum Mechanics (SUSY QM). In the present paper, the generalized form of intertwining is used for investigation of a massless (zero energy) two-dimensional Dirac equation with scalar external potential. This equation is related to the description of graphene and some other materials in the field of external electrostatic potential. The use of modified intertwining relations allows to find analytically solutions for the wave functions in the field of some external scalar potentials which depend on both space coordinates. A few examples of this construction are given explicitly.
The excitations in graphene and some other materials are described by two-dimensional massless Dirac equation with applied external potential of some kind. Solutions of this zero energy equation are built analytically for a wide class of scalar poten
Split Cooper pair is a natural source for entangled electrons which is a basic ingredient for quantum information in solid state. We report an experiment on a superconductor-graphene double quantum dot (QD) system, in which we observe Cooper pair spl
It is commonly known that the Fokker-Planck equation is exactly solvable only for some particular systems, usually with time-independent drift coefficients. To extend the class of solvable problems, we use the intertwining relations of SUSY Quantum M
We have measured the spin splitting in single-layer and bilayer graphene by means of tilted magnetic field experiments. Applying the Lifshitz-Kosevich formula for the spin-induced decrease of the Shubnikov de Haas amplitudes with increasing tilt angl
The quantum localization in the quantum Hall regime is revisited using Graphene monolayers with accurate measurements of the longitudinal resistivity as a function of temperature and current. We experimentally show for the first time a cross-over fro