ﻻ يوجد ملخص باللغة العربية
Let $mathbf{W}_1$ and $mathbf{W}_2$ be independent $ntimes n$ complex central Wishart matrices with $m_1$ and $m_2$ degrees of freedom respectively. This paper is concerned with the extreme eigenvalue distributions of double-Wishart matrices $(mathbf{W}_1+mathbf{W}_2)^{-1}mathbf{W}_1$, which are analogous to those of F matrices ${bf W}_1 {bf W}_2^{-1}$ and those of the Jacobi unitary ensemble (JUE). Defining $alpha_1=m_1-n$ and $alpha_2=m_2-n$, we derive new exact distribution formulas in terms of $(alpha_1+alpha_2)$-dimensional matrix determinants, with elements involving derivatives of Legendre polynomials. This provides a convenient exact representation, while facilitating a direct large-$n$ analysis with $alpha_1$ and $alpha_2$ fixed (i.e., under the so-called hard-edge scaling limit); the analysis is based on new asymptotic properties of Legendre polynomials and their relation with Bessel functions that are here established. Specifically, we present limiting formulas for the smallest and largest eigenvalue distributions as $n to infty$ in terms of $alpha_1$- and $alpha_2$-dimensional determinants respectively, which agrees with expectations from known universality results involving the JUE and the Laguerre unitary ensemble (LUE). We also derive finite-$n$ corrections for the asymptotic extreme eigenvalue distributions under hard-edge scaling, giving new insights on universality by comparing with corresponding correction terms derived recently for the LUE. Our derivations are based on elementary algebraic manipulations, differing from existing results on double-Wishart and related models which often involve Fredholm determinants, Painleve differential equations, or hypergeometric functions of matrix arguments.
We propose to use eigenvalue densities of unitary random matrix ensembles as mass distributions in gravitational lensing. The corresponding lens equations reduce to algebraic equations in the complex plane which can be treated analytically. We prove
We construct exact solutions for a system of two nonlinear partial differential equations describing the spatio-temporal dynamics of a predator-prey system where the prey per capita growth rate is subject to the Allee effect. Using the $big(frac{G}{G
We discuss the (right) eigenvalue equation for $mathbb{H}$, $mathbb{C}$ and $mathbb{R}$ linear quaternionic operators. The possibility to introduce an isomorphism between these operators and real/complex matrices allows to translate the quaternionic
Based on the Chen--Moller--Sauvaget formula, we apply the theory of integrable systems to derive three equations for the generating series of the Masur--Veech volumes ${rm Vol} , mathcal{Q}_{g,n}$ associated with the principal strata of the moduli sp
We introduce constellation ensembles, in which charged particles on a line (or circle) are linked with charged particles on parallel lines (or concentric circles). We present formulas for the partition functions of these ensembles in terms of either