ترغب بنشر مسار تعليمي؟ اضغط هنا

DsTau: Study of tau neutrino production with 400 GeV protons from the CERN-SPS

71   0   0.0 ( 0 )
 نشر من قبل Akitaka Ariga Dr.
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the DsTau experiment at the CERN SPS, an independent and direct way to measure tau neutrino production following high energy proton interactions was proposed. As the main source of tau neutrinos is a decay of Ds mesons, produced in proton-nucleus interactions, the project aims at measuring a differential cross section of this reaction. The experimental method is based on a use of high resolution emulsion detectors for effective registration of events with short lived particle decays. Here we present the motivation of the study, details of the experimental technique, and the first results of the analysis of the data collected during test runs, which prove feasibility of the full scale study of the process in future.

قيم البحث

اقرأ أيضاً

81 - S. Aoki , A. Ariga , T. Ariga 2017
The DsTau project proposes to study tau-neutrino production in high-energy proton interactions. The outcome of this experiment are prerequisite for measuring the $ u_tau$ charged-current cross section that has never been well measured. Precisely meas uring the cross section would enable testing of lepton universality in $ u_tau$ scattering and it also has practical implications for neutrino oscillation experiments and high-energy astrophysical $ u_tau$ observations. $D_s$ mesons, the source of tau neutrinos, following high-energy proton interactions will be studied by a novel approach to detect the double-kink topology of the decays $D_s rightarrow tau u_tau$ and $taurightarrow u_tau X$. Directly measuring $D_srightarrow tau$ decays will provide an inclusive measurement of the $D_s$ production rate and decay branching ratio to $tau$. The momentum reconstruction of $D_s$ will be performed by combining topological variables. This project aims to detect 1,000 $D_s rightarrow tau$ decays in $2.3 times 10^8$ proton interactions in tungsten target to study the differential production cross section of $D_s$ mesons. To achieve this, state-of-the-art emulsion detectors with a nanometric-precision readout will be used. The data generated by this project will enable the $ u_tau$ cross section from DONUT to be re-evaluated, and this should significantly reduce the total systematic uncertainty. Furthermore, these results will provide essential data for future $ u_tau$ experiments such as the $ u_tau$ program in the SHiP project at CERN. In addition, the analysis of $2.3 times 10^8$ proton interactions, combined with the expected high yield of $10^5$ charmed decays as by-products, will enable the extraction of additional physical quantities.
Measurements of particle emission from a replica of the T2K 90 cm-long carbon target were performed in the NA61/SHINE experiment at CERN SPS, using data collected during a high-statistics run in 2009. An efficient use of the long-target measurements for neutrino flux predictions in T2K requires dedicated reconstruction and analysis techniques. Fully-corrected differential yields of $pi^pm$-mesons from the surface of the T2K replica target for incoming 31 GeV/c protons are presented. A possible strategy to implement these results into the T2K neutrino beam predictions is discussed and the propagation of the uncertainties of these results to the final neutrino flux is performed.
Measurements of the $pi^{pm}$, $K^{pm}$, and proton double differential yields emitted from the surface of the 90-cm-long carbon target (T2K replica) were performed for the incoming 31 GeV/c protons with the NA61/SHINE spectrometer at the CERN SPS us ing data collected during 2010 run. The double differential $pi^{pm}$ yields were measured with increased precision compared to the previously published NA61/SHINE results, while the $K^{pm}$ and proton yields were obtained for the first time. A strategy for dealing with the dependence of the results on the incoming proton beam profile is proposed. The purpose of these measurements is to reduce significantly the (anti)neutrino flux uncertainty in the T2K long-baseline neutrino experiment by constraining the production of (anti)neutrino ancestors coming from the T2K target.
We report on a direct search for sub-GeV dark photons (A) which might be produced in the reaction e^- Z to e^- Z A via kinetic mixing with photons by 100 GeV electrons incident on an active target in the NA64 experiment at the CERN SPS. The As would decay invisibly into dark matter particles resulting in events with large missing energy. No evidence for such decays was found with 2.75cdot 10^{9} electrons on target. We set new limits on the gamma-A mixing strength and exclude the invisible A with a mass < 100 MeV as an explanation of the muon g_mu-2 anomaly.
Recently, the ATOMKI experiment has reported new evidence for the excess of $e^+ e^-$ events with a mass $sim$17 MeV in the nuclear transitions of $^4$He, that they previously observed in measurements with $^8$Be. These observations could be explaine d by the existence of a new vector $X17$ boson. So far, the search for the decay $X17 rightarrow e^+ e^-$ with the NA64 experiment at the CERN SPS gave negative results. Here, we present a new technique that could be implemented in NA64 aiming to improve the sensitivity and to cover the remaining $X17$ parameter space. If a signal-like event is detected, an unambiguous observation is achieved by reconstructing the invariant mass of the $X17$ decay with the proposed method. To reach this goal an optimization of the $X17$ production target, as well as an efficient and accurate reconstruction of two close decay tracks, is required. A dedicated analysis of the available experimental data making use of the trackers information is presented. This method provides independent confirmation of the NA64 published results [Phys. Rev. D101, 071101 (2020)], validating the tracking procedure. The detailed Monte Carlo study of the proposed setup and the background estimate shows that the goal of the proposed search is feasible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا