ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Strategies for Affirming Kramers-Henneberger Atoms

44   0   0.0 ( 0 )
 نشر من قبل Pei-Lun He
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Atoms exposed to high-frequency strong laser fields experience the ionization suppression due to the deformation of Kramers-Henneberger (KH) wave functions, which has not been confirmed yet in experiment. We propose a bichromatic pump-probe strategy to affirm the existence of KH states, which is formed by the pump pulse and ionized by the probe pulse. In the case of the single-photon ionization triggered by a vacuum ultra-violet probe pulse, the double-slit structure of KH atom is mapped to the photoelectron momentum distribution. In the case of the tunneling ionization induced by an infrared probe pulse, streaking in anisotropic Coulomb potential produces a characteristic momentum drift. Apart from bichromatic schemes, the non-Abelian geometric phase provides an alternative route to affirm the existence of KH states. Following specific loops in laser parameter space, a complete spin flipping transition could be achieved. Our proposal has advantages of being robust against focal-intensity average as well as ionization depletion, and is accessible with current laser facilities.



قيم البحث

اقرأ أيضاً

58 - Elena Floriani 2021
We apply Bogolyubovs averaging theorem to the motion of an electron of an atom driven by a linearly polarized laser field in the Kramers-Henneberger frame. We provide estimates of the differences between the original trajectories and the trajectories associated with the averaged system as a function of the parameters of the laser field and the region of phase space. We formulate a modified Bogolyubov averaging theorem based on the Hamiltonian properties of the system, and show that this version is better suited for these systems. From these estimates, we discuss the validity of the Kramers-Henneberger approximation.
We demonstrate optical transport of cold cesium atoms over millimeter-scale distances along an optical nanofiber. The atoms are trapped in a one-dimensional optical lattice formed by a two-color evanescent field surrounding the nanofiber, far red- an d blue-detuned with respect to the atomic transition. The blue-detuned field is a propagating nanofiber-guided mode while the red-detuned field is a standing-wave mode which leads to the periodic axial confinement of the atoms. Here, this standing wave is used for transporting the atoms along the nanofiber by mutually detuning the two counter-propagating fields which form the standing wave. The performance and limitations of the nanofiber-based transport are evaluated and possible applications are discussed.
We go beyond the approximate series-expansions used in the dispersion theory of finite size atoms. We demonstrate that a correct, and non-perturbative, theory dramatically alters the dispersion selfenergies of atoms. The non-perturbed theory gives as much as 100% corrections compared to the traditional series expanded theory for the smaller noble gas atoms.
356 - S. Bux , E. Lucioni , H. Bender 2010
We have studied the interplay between disorder and cooperative scattering for single scattering limit in the presence of a driving laser. Analytical results have been derived and we have observed cooperative scattering effects in a variety of experim ents, ranging from thermal atoms in an optical dipole trap, atoms released from a dark MOT and atoms in a BEC, consistent with our theoretical predictions.
170 - Tobias Schaetz 2021
Isolating neutral and charged particles from the environment is essential in precision experiments. For decades, this has been achieved by trapping ions with radio-frequency (rf) fields and neutral particles with optical fields. Recently, trapping of ions by interaction with light has been demonstrated. This might permit combining the advantages of optical trapping and ions. For example, by superimposing optical traps to investigate ensembles of ions and atoms in absence of any radiofrequency fields, as well as to benefit from the versatile and scalable trapping geometries featured by optical lattices. In particular, ions provide individual addressability, electronic and motional degrees of freedom that can be coherently controlled and detected via high fidelity, state-dependent operations. Their long-range Coulomb interaction is significantly larger compared to those of neutral atoms and molecules. This qualifies to study ultra-cold interaction and chemistry of trapped ions and atoms, as well as to provide a novel platform for higher-dimensional experimental quantum simulations. The aim of this topical review is to present the current state of the art and to discuss current challenges and the prospects of the emerging field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا